References

  1. WHO consolidated guidelines on tuberculosis. Module 4: Treatment – drug-resistant tuberculosis treatment, 2022 update. Geneva: World Health Organization; 2022 (https://apps.who.int/ iris/bitstream/handle/10665/365308/9789240063129-eng.pdf).
  2. Guidelines for treatment of drug-susceptible tuberculosis and patient care (2017 update). Geneva: World Health Organization; 2017 (https://apps.who.int/iris/bitstream/handle/10665/255052/9789241550000-eng. pdf).
  3. WHO consolidated guideline on tuberculosis. Module 1: Prevention – tuberculosis preventive treatment. Geneva: World Health Organization; 2020 (https://apps.who.int/iris/bitstream/han dle/10665/331525/9789240002906-eng.pdf).
  4. WHO handbook for guideline development – 2nd edition. Geneva: World Health Organization; 2014 (https://www.who.int/publications/i/item/9789241548960).
  5. Allotey P, Reidpath DD, Ghalib H, Pagnoni F, Skelly WC. Efficacious, effective, and embedded interventions: implementation research in infectious disease control. BMC Public Health. 2008;8:1–6. doi: https://doi. org/10.1186/1471–2458–8-343.
  6. Guide to operational research in programmes supported by the Global Fund. Geneva: The Global Fund & World Health Organization; 2007 (https://medbox.org/document/ guide-to-operational-research-in-programs-supported-by-the-global-fund#GO).
  7. Expanding capacity for operations research in reproductive health: summary report of a consultative meeting, World Health Organization, Geneva, Switzerland, December 10–12. Geneva: World Health Organization; 2003 (https://apps.who.int/iris/handle/10665/67936).
  8. Weyer K, Mirzayev F, Migliori GB, van Gemert W, D’Ambrosio L, Zignol M et al. Rapid molecular TB diagnosis: evidence, policy making and global implementation of Xpert MTB/RIF. Eur Respir J. 2013;42:252–71. doi: https://doi.org/10.1183/09031936.00157212.
  9. The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs: policy guidance [WHO/HTM/TB/2016.07]. Geneva: World Health Organization; 2016 (https://apps. who.int/iris/bitstream/handle/10665/246131/9789241510561-eng.pdf?sequence=1).
  10. Guidelines for surveillance of drug resistance in tuberculosis. 5th edition. Geneva: World Health Organization; 2015 (https://www.who.int/publications/i/item/9789241549134).
  11. WHO treatment guidelines for drug-resistant tuberculosis, 2016 update (WHO/HTM/TB/2016.04). Geneva: World Health Organization; 2016 (https://apps.who.int/iris/bitstream/handle/10665/250125/9789241549639-eng.pdf).
  12. WHO consolidated guidelines on tuberculosis. Module 3: Diagnosis – rapid diagnostics for tuberculosis detection, 2021 update. Geneva: World Health Organization; 2021 (https://www.who.int/publications/i/ item/9789240029415).
  13. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva: World Health Organization; 2018 (https://apps.who.int/iris/handle/10665/275469).
  14. WHO operational handbook on tuberculosis. Module 3: diagnosis – rapid diagnostics for tuberculosis detection, 2021 update. Geneva: World Health Organization; 2021 (https://www.who.int/publications/i/ item/9789240030589).
  15. Technical report on critical concentrations for TB drug susceptibility testing of medicines used in the treatment of drug-resistant TB. Geneva: World Health Organization; 2018 (https://www.who.int/publications/i/item/ WHO-CDS-TB-2018.5).
  16. Baker MA, Harries AD, Jeon CY, Hart JE, Kapur A, Lönnroth K et al. The impact of diabetes on tuberculosis treatment outcomes: a systematic review. BMC Med. 2011;9:81. doi: https://doi.org/10.1186/1741–7015–9-81.
  17. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis (WHO/HTM/TB/2014.11). Geneva: World Health Organization; 2014 (https://apps.who.int/ iris/handle/10665/130918).
  18. Active tuberculosis drug-safety monitoring and management (aDSM): framework for implementation. Geneva: World Health Organization; 2015 (https://apps.who.int/iris/bitstream/handle/10665/204465/WHO_ HTM_TB_2015.28_eng.pdf?sequence=1).
  19. WHO consolidated guidelines on tuberculosis. Module 4: Treatment – tuberculosis care and support. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240047716).
  20. Global tuberculosis report 2021. Geneva: World Health Organization; 2021 (https://www.who.int/ publications/i/item/9789240037021).
  21. Meeting report of the WHO expert consultation on the definition of extensively drug-resistant tuberculosis, 27–29 October 2020. Geneva: World Health Organization; 2021 (https://www.who.int/publications/i/ item/9789240018662).
  22. Mitnick CD, White RA, Lu C, Rodriguez CA, Bayona J, Becerra MC et al. Multidrug-resistant tuberculosis treatment failure detection depends on monitoring interval and microbiological method. Eur Respir J. 2016;48:1160–70. doi: https://doi.org/10.1183/13993003.00462–2016.
  23. Imperial MZ, Nedelman JR, Conradie F, Savic RM. Proposed linezolid dosing strategies to minimize adverse events for treatment of extensively drug-resistant tuberculosis. Clin Infect Dis. 2022;74:1736–47. doi: https:// doi.org/10.1093/cid/ciab699.
  24. Alghamdi WA, Al-Shaer MH, An G, Alsultan A, Kipiani M, Barbakadze K et al. Population pharmacokinetics of linezolid in tuberculosis patients: dosing regimen simulation and target attainment analysis. Antimicrob Agents Chemother. 2020;64. doi: https://doi.org/10.1128/aac.01174–20.
  25. Rao GG, Konicki R, Cattaneo D, Alffenaar JW, Marriott DJE, Neely M. Therapeutic drug monitoring can improve linezolid dosing regimens in current clinical practice: a review of linezolid pharmacokinetics and pharmacodynamics. Ther Drug Monit. 2020;42:83–92. doi: https://doi.org/10.1097/ftd.0000000000000710.
  26. Salinger DH, Subramoney V, Everitt D, Nedelman JR. Population pharmacokinetics of the antituberculosis agent pretomanid. Antimicrob Agents Chemother. 2019;63. doi: https://doi.org/10.1128/aac.00907–19.
  27. Pandie M, Wiesner L, McIlleron H, Hughes J, Siwendu S, Conradie F et al. Drug-drug interactions between bedaquiline and the antiretrovirals lopinavir/ritonavir and nevirapine in HIV-infected patients with drugresistant TB. J Antimicrob Chemother. 2016;71:1037–40. doi: https://doi.org/10.1093/jac/dkv447.
  28. Brust JCM, Gandhi NR, Wasserman S, Maartens G, Omar SV, Ismail NA et al. Effectiveness and cardiac safety of bedaquiline-based therapy for drug-resistant tuberculosis: a prospective cohort study. Clin Infect Dis. 2021;73:2083–92. doi: https://doi.org/10.1093/cid/ciab335.
  29. Brill MJ, Svensson EM, Pandie M, Maartens G, Karlsson MO. Confirming model-predicted pharmacokinetic interactions between bedaquiline and lopinavir/ritonavir or nevirapine in patients with HIV and drug-resistant tuberculosis. Int J Antimicrob Agents. 2017;49:212–7. doi: https://doi.org/10.1016/j.ijantimicag.2016.10.020.
  30. Howell P, Upton C, Mvuna N, Olugbosi M. Sterile tuberculous granuloma in a patient with XDR-TB treated with bedaquiline, pretomanid and linezolid. BMJ Case Rep. 2021;14. doi: https://doi.org/10.1136/ bcr-2021–245612.
  31. Rifat D, Li S-Y, Ioerger T, Shah K, Lanoix J-P, Lee J et al. Mutations in fbiD (Rv2983) as a novel determinant of resistance to pretomanid and delamanid in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2020;65:e01948–20. doi: https://doi.org/10.1128/AAC.01948–20.
  32. Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58:2979–81. doi: https://doi.org/10.1128/aac.00037–14.
  33. Fox GJ, Schaaf HS, Mandalakas A, Chiappini E, Zumla A, Marais BJ. Preventing the spread of multidrugresistant tuberculosis and protecting contacts of infectious cases. Clin Microbiol Infect. 2017;23:147–53. doi: https://doi.org/10.1016/j.cmi.2016.08.024.
  34. WHO guidelines on tuberculosis infection prevention and control: 2019 update. Geneva: World Health Organization; 2019 (https://www.who.int/publications/i/item/9789241550512).
  35. Fennelly KP, Martyny JW, Fulton KE, Orme IM, Cave DM, Heifets LB. Cough-generated aerosols of Mycobacterium tuberculosis: a new method to study infectiousness. Am J Respir Crit Care Med. 2004;169:604–9. doi: https://doi.org/10.1164/rccm.200308–1101OC.
  36. Mulder C, Rupert S, Setiawan E, Mambetova E, Edo P, Sugiharto J et al. Budgetary impact of using BPaL for treating extensively drug-resistant tuberculosis. BMJ Glob Health. 2022;7. doi: https://doi.org/10.1136/ bmjgh-2021–007182.
  37. Gomez GB, Siapka M, Conradie F, Ndjeka N, Garfin AMC, Lomtadze N et al. Cost-effectiveness of bedaquiline, pretomanid and linezolid for treatment of extensively drug-resistant tuberculosis in South Africa, Georgia and the Philippines. BMJ Open. 2021;11:e051521. doi: https://doi.org/10.1136/bmjopen-2021–051521.
  38. Meeting report of the WHO expert consultation on drug-resistant tuberculosis treatment outcome definitions, 17–19 November 2020. Geneva: World Health Organization; 2021 (https://www.who.int/publications/i/ item/9789240022195).
  39. Zimenkov DV, Nosova EY, Kulagina EV, Antonova OV, Arslanbaeva LR, Isakova AI et al. Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother. 2017;72:1901–6. doi: https://doi.org/10.1093/jac/dkx094.
  40. Wasserman S, Louw G, Ramangoaela L, Barber G, Hayes C, Omar SV et al. Linezolid resistance in patients with drug-resistant TB and treatment failure in South Africa. J Antimicrob Chemother. 2019;74:2377–84. doi: https://doi.org/10.1093/jac/dkz206.
  41. Management of rifampicin-resistant tuberculosis: a clinical reference guide. Pretoria: National Department of Health, South Africa; 2019 (https://www.health.gov.za/wp-content/uploads/2020/11/management-ofrifampicin- resistant-tb-booklet-0220-v11.pdf).
  42. Agyeman AA, Ofori-Asenso R. Efficacy and safety profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob. 2016;15:41. doi: https://doi.org/10.1186/s12941–016–0156-y.
  43. Jaspard M, Butel N, El Helali N, Marigot-Outtandy D, Guillot H, Peytavin G et al. Linezolid-associated neurologic adverse events in patients with multidrug-resistant tuberculosis, France. Emerg Infect Dis. 2020;26:1792–800. doi: https://doi.org/10.3201/eid2608.191499.
  44. Shenje J, Ifeoma Adimora-Nweke F, Ross IL, Ntsekhe M, Wiesner L, Deffur A et al. Poor penetration of antibiotics into pericardium in pericardial tuberculosis. EBioMedicine. 2015;2:1640–9. doi: https://doi. org/10.1016/j.ebiom.2015.09.025.
  45. Bonnet I, Haddad E, Guglielmetti L, Bemer P, Bernard L, Bourgoin A et al. Clinical features and outcome of multidrug-resistant osteoarticular tuberculosis: a 12-year case series from France. Microorganisms. 2022;10. doi: https://doi.org/10.3390/microorganisms10061215.
  46. Wen S, Zhang T, Yu X, Dong W, Lan T, Fan J et al. Bone penetration of linezolid in osteoarticular tuberculosis patients of China. Int J Infect Dis. 2021;103:364–9. doi: https://doi.org/10.1016/j.ijid.2020.11.203.
  47. WHO consolidated guidelines on tuberculosis. Module 5: Management of tuberculosis in children and adolescents. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/ item/9789240046764).
  48. Isanaka S, Mugusi F, Urassa W, Willett WC, Bosch RJ, Villamor E et al. Iron deficiency and anemia predict mortality in patients with tuberculosis. J Nutr. 2012;142:350–7. doi: https://doi.org/10.3945/jn.111.144287.
  49. Taubel J, Prasad K, Rosano G, Ferber G, Wibberley H, Cole ST et al. Effects of the fluoroquinolones moxifloxacin and levofloxacin on the QT subintervals: sex differences in ventricular repolarization. J Clin Pharmacol. 2020;60:400–8. doi: https://doi.org/10.1002/jcph.1534.
  50. Management of drug-resistant tuberculosis in pregnant and peripartum people: a field guide. First edition. Boston, USA: The Sentinel Project for Pediatric Drug-Resistant Tuberculosis; 2022 (https://sentinel-project. org/wp-content/uploads/2022/09/DRTB-Field-Guide-Pregnancy_Sept_2022.pdf).
  51. Harris RC, Grandjean L, Martin LJ, Miller AJ, Nkang JE, Allen V et al. The effect of early versus late treatment initiation after diagnosis on the outcomes of patients treated for multidrug-resistant tuberculosis: a systematic review. BMC Infect Dis. 2016;16:193. doi: https://doi.org/10.1186/s12879–016–1524–0.
  52. Htun YM, Khaing TMM, Aung NM, Yin Y, Myint Z, Aung ST et al. Delay in treatment initiation and treatment outcomes among adult patients with multidrug-resistant tuberculosis at Yangon Regional Tuberculosis Centre, Myanmar: a retrospective study. PLoS One. 2018;13:e0209932. doi: https://doi.org/10.1371/journal. pone.0209932.
  53. Kempker RR, Kipiani M, Mirtskhulava V, Tukvadze N, Magee MJ, Blumberg HM. Acquired drug resistance in Mycobacterium tuberculosis and poor outcomes among patients with multidrug-resistant tuberculosis. Emerg Infect Dis. 2015;21:992–1001. doi: https://doi.org/10.3201/eid2106.141873.
  54. Senneville E, Legout L, Valette M, Yazdanpanah Y, Giraud F, Beltrand E et al. Risk factors for anaemia in patients on prolonged linezolid therapy for chronic osteomyelitis: a case-control study. J Antimicrob Chemother. 2004;54:798–802. doi: https://doi.org/10.1093/jac/dkh409.
  55. Kerkhoff AD, Meintjes G, Opie J, Vogt M, Jhilmeet N, Wood R et al. Anaemia in patients with HIV-associated TB: relative contributions of anaemia of chronic disease and iron deficiency. Int J Tuberc Lung Dis. 2016;20:193– 201. doi: https://doi.org/10.5588/ijtld.15.0558.
  56. Barzegari S, Afshari M, Movahednia M, Moosazadeh M. Prevalence of anemia among patients with tuberculosis: A systematic review and meta-analysis. Indian J Tuberc. 2019;66:299–307. doi: https://doi. org/10.1016/j.ijtb.2019.04.002.
  57. Oehadian A, Santoso P, Menzies D, Ruslami R. Concise clinical review of hematologic toxicity of linezolid in multidrug-resistant and extensively drug-resistant tuberculosis: role of mitochondria. Tuberc Respir Dis (Seoul). 2022;85:111–21. doi: https://doi.org/10.4046/trd.2021.0122.
  58. Linh NN, Viney K, Gegia M, Falzon D, Glaziou P, Floyd K et al. World Health Organization treatment outcome definitions for tuberculosis: 2021 update. Eur Respir J. 2021;58. doi: https://doi. org/10.1183/13993003.00804–2021.
  59. Tack I, Dumicho A, Ohler L, Shigayeva A, Bulti AB, White K et al. Safety and effectiveness of an alloral, bedaquiline-based, shorter treatment regimen for rifampicin-resistant tuberculosis in high Human Immunodeficiency Virus (HIV) burden rural South Africa: a retrospective cohort analysis. Clin Infect Dis. 2021;73:e3563–e71. doi: https://doi.org/10.1093/cid/ciaa1894.
  60. Halleux CM, Falzon D, Merle C, Jaramillo E, Mirzayev F, Olliaro P et al. The World Health Organization global aDSM database: generating evidence on the safety of new treatment regimens for drug-resistant tuberculosis. Eur Respir J. 2018;51. doi: https://doi.org/10.1183/13993003.01643–2017.
  61. ShORRT (Short, all-Oral Regimens for Rifampicin-resistant Tuberculosis) research package. Geneva: World Health Organization and the Special Programme for Research and Training in Tropical Diseases; 2015 (https://tdr.who.int/activities/shorrt-research-package).
  62. Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook AM et al. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med. 2020;382:893–902. doi: https://doi.org/10.1056/NEJMoa1901814.
  63. Conradie F, Bagdasaryan TR, Borisov S, Howell P, Mikiashvili L, Ngubane N et al. Bedaquiline-pretomanidlinezolid regimens for drug-resistant tuberculosis. N Engl J Med. 2022;387:810–23. doi: https://doi. org/10.1056/NEJMoa2119430.
  64. Berry C, du Cros P, Fielding K, Gajewski S, Kazounis E, McHugh TD et al. TB-PRACTECAL: study protocol for a randomised, controlled, open-label, phase II-III trial to evaluate the safety and efficacy of regimens containing bedaquiline and pretomanid for the treatment of adult patients with pulmonary multidrugresistant tuberculosis. Trials. 2022;23:484. doi: https://doi.org/10.1186/s13063–022–06331–8.
  65. WHO operational handbook on tuberculosis. Module 4: treatment. Tuberculosis care and support. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240053519).
  66. WHO best-practice statement on the off-label use of bedaquiline and delamanid for the treatment of multidrug-resistant tuberculosis (WHO/HTM/TB/2017.20). Geneva: World Health Organization; 2017 (https://apps.who.int/iris/bitstream/handle/10665/258941/WHO-HTM-TB-2017.20-eng.pdf?sequence=1).
  67. Huerga H, Khan U, Bastard M, Mitnick CD, Lachenal N, Khan PY et al. Safety and effectiveness outcomes from a 14-country cohort of patients with multi-drug resistant tuberculosis treated concomitantly with bedaquiline, delamanid and other second-line drugs. Clin Infect Dis. 2022:ciac176. doi: https://doi. org/10.1093/cid/ciac176.
  68. Guidelines for the programmatic management of drug-resistant tuberculosis, 2011 update (WHO/ HTM/TB/2011.6). Geneva: World Health Organization; 2011 (https://www.who.int/publications/i/ item/9789241501583).
  69. WHO treatment guidelines for isoniazid-resistant tuberculosis. Supplement to the WHO treatment guidelines for drug-resistant tuberculosis (WHO/CDS/TB/2018.7). Geneva: World Health Organization; 2018 (https:// apps.who.int/iris/bitstream/handle/10665/260494/9789241550079-eng.pdf).
  70. Line probe assays for detection of drug-resistant tuberculosis: interpretation and reporting manual for laboratory staff and clinicians. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/ item/9789240046665).
  71. Dookie N, Khan A, Padayatchi N, Naidoo K. Application of next generation sequencing for diagnosis and clinical management of drug-resistant tuberculosis: Updates on recent developments in the field. Front Microbiol. 2022;13. doi: https://doi.org/10.3389/fmicb.2022.775030.
  72. The CRyPTIC Consortium. Genome-wide association studies of global Mycobacterium tuberculosis resistance to 13 antimicrobials in 10,228 genomes identify new resistance mechanisms. PLoS Biol. 2022;20:e3001755. doi: https://doi.org/10.1371/journal.pbio.3001755.
  73. Moodliar R, Aksenova V, Frias MVG, van de Logt J, Rossenu S, Birmingham E et al. Bedaquiline for multidrugresistant TB in paediatric patients. Int J Tuberc Lung Dis. 2021;25:716–24. doi: https://doi.org/10.5588/ ijtld.21.0022.
  74. Ndjeka N, Campbell JR, Meintjes G, Maartens G, Schaaf HS, Hughes J et al. Treatment outcomes 24 months after initiating short, all-oral bedaquiline-containing or injectable-containing rifampicin-resistant tuberculosis treatment regimens in South Africa: a retrospective cohort study. Lancet Infect Dis. 2022;22:1042–51. doi: https://doi.org/10.1016/S1473–3099(21)00811–2.
  75. Kim CT, Kim T-O, Shin H-J, Ko YC, Hun Choe Y, Kim H-R et al. Bedaquiline and delamanid for the treatment of multidrug-resistant tuberculosis: a multicentre cohort study in Korea. Eur Respir J. 2018;51:1702467. doi: https://doi.org/10.1183/13993003.02467–2017.
  76. Pontali E, Sotgiu G, Tiberi S, D’Ambrosio L, Centis R, Migliori GB. Cardiac safety of bedaquiline: a systematic and critical analysis of the evidence. Eur Respir J. 2017;50:1801386. doi: https://doi. org/10.1183/13993003.01462–2017.
  77. Guglielmetti L, Jaspard M, Le Dû D, Lachâtre M, Marigot-Outtandy D, Bernard C et al. Long-term outcome and safety of prolonged bedaquiline treatment for multidrug-resistant tuberculosis. Eur Respir J. 2017;49:1601799. doi: https://doi.org/10.1183/13993003.01799–2016.
  78. Dooley KE, Rosenkranz S, Conradie F, Moran L, Hafner R, von Groote-Bidlingmaier F et al. QT effects of bedaquiline, delamanid or both in MDR-TB patients: the DELIBERATE trial (DELamanId BEdaquiline for ResistAnt TubErculosis). Maryland, Johns Hopkins University School of Medicine. 2019.
  79. Olayanju O, Esmail A, Limberis J, Dheda K. A regimen containing bedaquiline and delamanid compared to bedaquiline in patients with drug-resistant tuberculosis. Eur Respir J. 2020;55:1901181. doi: https://doi. org/10.1183/13993003.01181–2019.
  80. International standards for tuberculosis care. 3rd edition. The Hague: TB CARE 1; 2014 (https://www.who. int/publications/m/item/international-standards-for-tuberculosis-care).
  81. Hewison C, Khan U, Bastard M, Lachenal N, Coutisson S, Osso E et al. Safety of treatment regimens containing bedaquiline and delamanid in the endTB Cohort. Clin Infect Dis. 2022;75:1006–13. doi: https:// doi.org/10.1093/cid/ciac019.
  82. Ismail N, Rivière E, Limberis J, Huo S, Metcalfe JZ, Warren RM et al. Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis. Lancet Microbe. 2021;2:e604–e16. doi: https://doi.org/10.1016/S2666–5247(21)00175–0.
  83. Wu S-H, Chan H-H, Hsiao H-C, Jou R. Primary bedaquiline resistance among cases of drug-resistant tuberculosis in Taiwan. Front Microbiol. 2021;12. doi: https://doi.org/10.3389/fmicb.2021.754249.
  84. Tang S, Yao L, Hao X, Zhang X, Liu G, Liu X et al. Efficacy, safety and tolerability of linezolid for the treatment of XDR-TB: a study in China. Eur Respir J. 2015;45:161–70. doi: https://doi.org/10.1183/09031936.00035114.
  85. Im JH, Baek JH, Kwon HY, Lee J-S. Incidence and risk factors of linezolid-induced lactic acidosis. Int J Infect Dis. 2015;31:47–52. doi: https://doi.org/10.1016/j.ijid.2014.12.009.
  86. Lee M, Lee J, Carroll MW, Choi H, Min S, Song T et al. Linezolid for treatment of chronic extensively drugresistant tuberculosis. New Eng J Med. 2012;367:1508–18. doi: https://doi.org/10.1056/NEJMoa1201964.
  87. Mao Y, Dai D, Jin H, Wang Y. The risk factors of linezolid-induced lactic acidosis: a case report and review. Med. 2018;97:e12114. doi: https://doi.org/10.1097/MD.0000000000012114.
  88. Technical report on the pharmacokinetics and pharmacodynamics (PK/PD) of medicines used in the treatment of drug-resistant tuberculosis. Geneva: World Health Organization; 2018 (https://apps.who.int/ iris/handle/10665/260440).
  89. Wasserman S, Brust JC, Abdelwahab MT, Little F, Denti P, Wiesner L et al. Linezolid toxicity in patients with drug-resistant tuberculosis: a prospective cohort study. J Antimicrob Chemother. 2022;77:1146–54. doi: https://doi.org/10.1093/jac/dkac019.
  90. Diacon AH, De Jager VR, Dawson R, Narunsky K, Vanker N, Burger DA et al. Fourteen-day bactericidal activity, safety, and pharmacokinetics of linezolid in adults with drug-sensitive pulmonary tuberculosis. Antimicrob Agents Chemother. 2020;64. doi: https://doi.org/10.1128/AAC.02012–19.
  91. Lawrence KR, Adra M, Gillman PK. Serotonin toxicity associated with the use of linezolid: a review of postmarketing data. Clin Infect Dis. 2006;42:1578–83. doi: https://doi.org/10.1086/503839.
  92. Tyeku N, Apolisi I, Daniels J, Beko B, Memani B, Cengani L et al. Pediatric delamanid treatment for children with rifampicin-resistant TB. Int J Tuberc Lung Dis. 2022;26:986–8. doi: https://doi.org/10.5588/ijtld.22.0264.
  93. Tucker EW, Pieterse L, Zimmerman MD, Udwadia ZF, Peloquin CA, Gler MT et al. Delamanid central nervous system pharmacokinetics in tuberculous meningitis in rabbits and humans. Antimicrob Agents Chemother. 2019;63. doi: https://doi.org/10.1128/AAC.00913–19.
  94. European Medicines Agency. Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone antibiotics. 2019 (https://www.ema.europa.eu/en/medicines/ human/referrals/quinolone-fluoroquinolone-containing-medicinal-products).
  95. Schünemann H, Brożek J, Guyatt G, Oxman A (eds.)GRADE handbook. Hamilton, Canada;2013 (https:// gdt.gradepro.org/app/handbook/handbook.html).
  96. Cannon JP, Lee TA, Clark NM, Setlak P, Grim SA. The risk of seizures among the carbapenems: a metaanalysis. J Antimicrob Chemother. 2014;69:2043–55. doi: https://doi.org/10.1093/jac/dku111.
  97. Chambers HF, Turner J, Schecter GF, Kawamura M, Hopewell PC. Imipenem for treatment of tuberculosis in mice and humans. Antimicrob Agents Chemother. 2005;49:2816–21. doi: https://doi.org/10.1128/ AAC.49.7.2816–2821.2005.
  98. Dooley KE, Obuku EA, Durakovic N, Belitsky V, Mitnick C, Nuermberger EL et al. World Health Organization Group 5 drugs for the treatment of drug-resistant tuberculosis: unclear efficacy or untapped potential? J Infect Dis. 2013;207:1352–8. doi: https://doi.org/10.1093/infdis/jis460.
  99. Garges HP, Alexander KA. Pharmacology review: newer antibiotics: imipenem/cilastatin and meropenem. NeoReviews. 2003;4:364e–8. doi: https://doi.org/10.1542/neo.4.12.e364.
  100. Hornik CP, Herring AH, Benjamin DK, Capparelli EV, Kearns GL, van den Anker J et al. Adverse events associated with meropenem versus imipenem/cilastatin therapy in a large retrospective cohort of hospitalized infants. Pediatr Infect Dis J. 2013;32:748–53. doi: https://doi.org/10.1097/INF.0b013e31828be70b.
  101. Dauby N, Muylle I, Mouchet F, Sergysels R, Payen M-C. Meropenem/clavulanate and linezolid treatment for extensively drug-resistant tuberculosis. Pediatr Infect Dis J. 2011;30:812–3. doi: https://doi.org/10.1097/ INF.0b013e3182154b05.
  102. De Lorenzo S, Alffenaar JW, Sotgiu G, Centis R, D’Ambrosio L, Tiberi S et al. Efficacy and safety of meropenem-clavulanate added to linezolid-containing regimens in the treatment of MDR-/XDR-TB. Eur Respir J. 2013;41:1386–92. doi: https://doi.org/10.1183/09031936.00124312.
  103. Payen M, Muylle I, Vandenberg O, Mathys V, Delforge M, Van den Wijngaert S et al. Meropenem-clavulanate for drug-resistant tuberculosis: a follow-up of relapse-free cases. Int J Tuberc Lung Dis. 2018;22:34–9. doi: https://doi.org/10.5588/ijtld.17.0352.
  104. Trébucq A, Schwoebel V, Kashongwe Z, Bakayoko A, Kuaban C, Noeske J et al. Treatment outcome with a short multidrug-resistant tuberculosis regimen in nine African countries. Int J Tuberc Lung Dis. 2018;22:17– 25. doi: https://doi.org/10.5588/ijtld.17.0498.
  105. Information for healthcare professionals: gatifloxacin (marketed as Tequin) [website]. US Food and Drug Administration; 2006 (https://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationfor PatientsandProviders/ucm107821.htm).
  106. Park-Wyllie LY, Juurlink DN, Kopp A, Shah BR, Stukel TA, Stumpo C et al. Outpatient gatifloxacin therapy and dysglycemia in older adults. New Eng J Med. 2006;354:1352–61. doi: https://doi.org/10.1056/NEJMoa055191.
  107. Katiyar SK, Bihari S, Prakash S, Mamtani M, Kulkarni H. A randomised controlled trial of high-dose isoniazid adjuvant therapy for multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2008;12:139–45. doi: https:// pubmed.ncbi.nlm.nih.gov/18230245/.
  108. Clinical and programmatic guide for patient management with new TB drugs. endTB Consortium; 2018 (https://www.endtb.org/sites/default/files/2018–04/Guide%20for%20New%20TB%20Drugs%20Version%20 4.0.pdf).
  109. Donald PR. The chemotherapy of tuberculous meningitis in children and adults. Tuberculosis. 2010;90:375– 92. doi: https://doi.org/10.1016/j.tube.2010.07.003.
  110. Sun F, Ruan Q, Wang J, Chen S, Jin J, Shao L et al. Linezolid manifests a rapid and dramatic therapeutic effect for patients with life-threatening tuberculous meningitis. Antimicrob Agents Chemother. 2014;58:6297–301. doi: https://doi.org/10.1128/AAC.02784–14.
  111. Thwaites GE, Bhavnani SM, Chau TTH, Hammel JP, Torok ME, Van Wart SA et al. Randomized pharmacokinetic and pharmacodynamic comparison of fluoroquinolones for tuberculous meningitis. Antimicrob Agents Chemother. 2011;55:3244–53. doi: https://doi.org/10.1128/AAC.00064–11.
  112. Curry International Tuberculosis Center, California Department of Public Health. Drug-resistant tuberculosis: a survival guide for clinicians. California: University of California San Francisco; 2016 (https://www.currytbcenter. ucsf.edu/products/view/drug-resistant-tuberculosis-survival-guide-clinicians-3rd-edition).
  113. Daley CL. Mycobacterium tuberculosis complex. In: Yu V, Merigan TJ & Barriere S (eds.), Antimicrobial Therapy and Vaccines: Williams & Wilkins; 1999:531–6.
  114. Holdiness MR. Cerebrospinal fluid pharmacokinetics of the antituberculosis drugs. Clin Pharmacokinet. 1985;10:532–4. doi: https://doi.org/10.2165/00003088–198510060–00006.
  115. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach. 2nd ed. Geneva: World Health Organization; 2016 (https:// apps.who.int/iris/bitstream/handle/10665/208825/9789241549684_eng.pdf;jsessionid=2FD2A34B73DE76 E3C987F452664F8BAC?sequence=1).
  116. Ramachandran G, Kumar AH, Srinivasan R, Geetharani A, Sugirda P, Nandhakumar B et al. Effect of rifampicin & isoniazid on the steady state pharmacokinetics of moxifloxacin. Indian J Med Res. 2012;136:979. doi: https://pubmed.ncbi.nlm.nih.gov/23391793/.
  117. Briasoulis A, Agarwal V, Pierce WJ. QT prolongation and torsade de pointes induced by fluoroquinolones: infrequent side effects from commonly used medications. Cardiology. 2011;120:103–10. doi: https://doi. org/10.1159/000334441.
  118. Cho Y, Park HS. Association of oral ciprofloxacin, levofloxacin, ofloxacin and moxifloxacin with the risk of serious ventricular arrhythmia: a nationwide cohort study in Korea. BMJ Open. 2018;8. doi: http://dx.doi. org/10.1136/bmjopen-2017–020974.
  119. Baniasadi S, Eftekhari P, Tabarsi P, Fahimi F, Raoufy MR, Masjedi MR et al. Protective effect of N-acetylcysteine on antituberculosis drug-induced hepatotoxicity. European J Gastroent Hepatol. 2010;22:1235–8. doi: https://doi.org/10.1183/13993003.congress-2016.PA2716.
  120. van Hest R, Baars H, Kik S, van Gerven P, Trompenaars M-C, Kalisvaart N et al. Hepatotoxicity of rifampinpyrazinamide and isoniazid preventive therapy and tuberculosis treatment. Clin Infect Dis. 2004;39:488–96. doi: https://doi.org/10.1086/422645.
  121. Peloquin CA, Jaresko GS, Yong C-L, Keung A, Bulpitt AE, Jelliffe RW. Population pharmacokinetic modeling of isoniazid, rifampin, and pyrazinamide. Antimicrob Agents Chemother. 1997;41:2670–9. doi: https://doi. org/10.1128/AAC.41.12.2670.
  122. Global Drug Facility – Procurement and supply – List of products available [website]. Stop TB Partnership; 2022 (https://www.stoptb.org/global-drug-facility-gdf/gdf-product-catalog).
  123. Public call for individual patient data on treatment of rifampicin and multidrug-resistant (MDR/RR-TB) tuberculosis. Geneva: World Health Organization; 2018 (https://www.who.int/news-room/articles-detail/publiccall- for-individual-patient-data-on-treatment-of-rifampicin-and-multidrug-resistant-(mdr-rr-tb)-tuberculosis).
  124. Public call for individual patient data on treatment of rifampicin and multidrug-resistant (MDR/RR-TB) tuberculosis. Geneva: World Health Organization; 2019 (https://www.who.int/news-room/articles-detail/ public-call-for-individual-patient-data-on-treatment-of-drug-resistant-tuberculosis).
  125. Ahuja SD, Ashkin D, Avendano M, Banerjee R, Bauer M, Bayona JN et al. Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients. PLoS Med. 2012;9:e1001300. doi: 10.1371/journal.pmed.1001300.
  126. Campbell J, Falzon D, Mirzayev F, Jaramillo E, Migliori G, Mitnick C et al. Improving quality of patient data for treatment of multidrug- or rifampin-resistant tuberculosis. Emerg Infect Dis. 2020;26. doi: https://doi. org/10.3201/eid2603.190997.
  127. Fox GJ, Mitnick CD, Benedetti A, Chan ED, Becerra M, Chiang C-Y et al. Surgery as an adjunctive treatment for multidrug-resistant tuberculosis: an individual patient data metaanalysis. Clin Infect Dis. 2016;62:887– 95. doi: https://doi.org/10.1093/cid/ciw002.
  128. Kang M, Kim H, Choi Y, Kim K, Shim Y, Koh W et al. Surgical treatment for multidrug-resistant and extensive drug-resistant tuberculosis. Ann Thorac Surg. 2010;89:1597–602. doi: https://doi.org/10.1016/j. athoracsur.2010.02.020.
  129. Harris RC, Khan MS, Martin LJ, Allen V, Moore DAJ, Fielding K et al. The effect of surgery on the outcome of treatment for multidrug-resistant tuberculosis: a systematic review and meta-analysis. BMC Infect Dis. 2016;16. doi: https://doi.org/10.1186/s12879–016–1585–0.
  130. WHO consolidated guidelines on tuberculosis. Module 4: Treatment – drug-susceptible tuberculosis treatment. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240048126).
  131. Chotmongkol V, Jitpimolmard S, Thavornpitak Y. Corticosteroid in tuberculous meningitis. J Med Assoc Thai. 1996;79:83–90. doi: https://pubmed.ncbi.nlm.nih.gov/8868018/.
  132. Kumarvelu S, Prasad K, Khosla A, Behari M, Ahuja GK. Randomized controlled trial of dexamethasone in tuberculous meningitis. Tubercle Lung Dis. 1994;75:203–7. doi: https://doi.org/10.1016/0962–8479(94)90009–4.
  133. Malhotra HS, Garg RK, Singh MK, Agarwal A, Verma R. Corticosteroids (dexamethasone versus intravenous methylprednisolone) in patients with tuberculous meningitis. Ann Trop Med Parasit. 2009;103:625–34. doi: https://doi.org/10.1179/000349809X12502035776315.
  134. Schoeman JF, Van Zyl LE, Laubscher JA, Donald PR. Effect of corticosteroids on intracranial pressure, computed tomographic findings, and clinical outcome in young children with tuberculous meningitis. Pediatrics. 1997;99:226–31. doi: https://doi.org/10.1542/peds.99.2.226.
  135. Thwaites GE, Nguyen DB, Nguyen HD, Hoang TQ, Do TTO, Nguyen TCT et al. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. New Eng J Med. 2004;351:1741–51. doi: https://doi.org/10.1056/NEJMoa040573.
  136. Critchley JA, Young F, Orton L, Garner P. Corticosteroids for prevention of mortality in people with tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13:223–37. doi: https://doi. org/10.1016/S1473–3099(12)70321–3.
  137. Hakim JG, Ternouth I, Mushangi E, Siziya S, Robertson V, Malin A. Double blind randomised placebo controlled trial of adjunctive prednisolone in the treatment of effusive tuberculous pericarditis in HIV seropositive patients. Heart. 2000;84:183–8. doi: https://doi.org/10.1136/heart.84.2.183.
  138. Mayosi BM, Ntsekhe M, Bosch J, Pandie S, Jung H, Gumedze F et al. Prednisolone and Mycobacterium indicus pranii in tuberculous pericarditis. New Eng J Med. 2014;371:1121–30. doi: https://doi.org/10.1056/ NEJMoa1407380.
  139. Mayosi BM, Ntsekhe M, Volmink JA, Commerford PJ. Interventions for treating tuberculous pericarditis. Cochrane Database Syst Rev 2002:CD000526. doi: https://doi.org/10.1002/14651858.CD000526.
  140. Reuter H, Burgess LJ, Louw VJ, Doubell AF. Experience with adjunctive corticosteroids in managing tuberculous pericarditis. Cardiovasc J S Afr. 2006;17:233–8. doi: https://pubmed.ncbi.nlm.nih.gov/17117227/.
  141. Schrire V. Experience with pericarditis at Groote Schuur Hospital, Cape Town: an analysis of one hundred and sixty cases studied over a six-year period. S Afr Med J. 1959;33:810–7. doi: https://pubmed.ncbi.nlm. nih.gov/14443596/.
  142. Strang JI, Kakaza HH, Gibson DG, Allen BW, Mitchison DA, Evans DJ et al. Controlled clinical trial of complete open surgical drainage and of prednisolone in treatment of tuberculous pericardial effusion in Transkei. Lancet. 1988;2:759–64. doi: https://doi.org/10.1016/s0140–6736(88)92415–4.
  143. Strang JI, Kakaza HH, Gibson DG, Girling DJ, Nunn AJ, Fox W. Controlled trial of prednisolone as adjuvant in treatment of tuberculous constrictive pericarditis in Transkei. Lancet. 1987;2:1418–22. doi: https://doi. org/10.1016/s0140–6736(87)91127–5.
  144. Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. Geneva: World Health Organization; 2021 (https://www. who.int/publications/i/item/9789240031593).
  145. Lan Z, Ahmad N, Baghaei P, Barkane L, Benedetti A, Brode SK et al. Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med. 2020. doi: https://doi.org/10.1016/S2213–2600(20)30047–3.
  146. World Health Organization, Management Sciences for Health, KNCV Tuberculosis Foundation. Electronic recording and reporting for tuberculosis care and control (WHO/HTM/TB/2011.22). Geneva: World Health Organization; 2012 (https://apps.who.int/iris/handle/10665/44840).
  147. Koh WJ, Kwon OJ, Suh GY, Chung MP, Kim H, Lee NY. Six-month therapy with aerosolized interferon-γ for refractory multidrug-resistant pulmonary tuberculosis. J Korean Med Sci. 2004;19:167–71. doi: https://doi. org/10.3346/jkms.2004.19.2.167.
  148. Laserson KF, Thorpe LE, Leimane V, Weyer K, Mitnick CD, Riekstina V et al. Speaking the same language: treatment outcome definitions for multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2005;9:640–5. doi: https://pubmed.ncbi.nlm.nih.gov/15971391/.
  149. Guidelines for the programmatic management of drug-resistant tuberculosis, 1st ed. (WHO/ HTM/TB/2006.361). Geneva: World Health Organization; 2006 (https://apps.who.int/iris/bitstr eam/10665/246249/2/9789241546959-eng.pdf).
  150. Linh NN, Viney K, Gegia M, Falzon D, Glaziou P, Floyd K et al. World Health Organization treatment outcome definitions for tuberculosis: 2021 update. Eur Respir J. 2021;58:2100804. doi: 10.1183/13993003.00804–2021.
  151. Avaliani Z, Gozalov O, Kuchukhidze G, Skrahina A, Soltan V, van den Boom M et al. What is behind programmatic treatment outcome definitions for tuberculosis? Eur Clin Respir J. 2020;56:2001751. doi: https://doi.org/10.1183/13993003.01751–2020.
  152. Migliori GB, Marx FM, Ambrosino N, Zampogna E, Schaaf HS, van der Zalm MM et al. Clinical standards for the assessment, management and rehabilitation of post-TB lung disease. Int J Tuberc Lung Dis. 2021;25:797– 813. doi: https://doi.org/10.5588/ijtld.21.0425.
  153. WHO operational handbook on tuberculosis. Module 5: management of tuberculosis in children and adolescents. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/ item/9789240046832).
  154. Report of a WHO expert consultation on dosing to enable implementation of treatment recommendations in the WHO consolidated guidelines on the management of TB in children and adolescents. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240055193).
  155. Denti P, Wasmann RE, Francis J, McIlleron H, Sugandhi N, Cressey TR et al. One dose does not fit all: revising the WHO paediatric dosing tool to include the non-linear effect of body size and maturation. Lancet Child Adolesc Health. 2022;6:9–10. doi: https://doi.org/10.1016/s2352–4642(21)00302–3.
  156. Garcia-Prats AJ, Rose PC, Draper HR, Seddon JA, Norman J, McIlleron HM et al. Effect of coadministration of lidocaine on the pain and pharmacokinetics of intramuscular amikacin in children with multidrugresistant tuberculosis: a randomized crossover trial. Pediatr Infect Dis J. 2018;37:1199–203. doi: https://doi. org/10.1097/INF.0000000000001983.

تصفُّح الكتاب