References

All reference accessed 11 September 2024

  1. Global tuberculosis report 2024. Geneva: World Health Organization; 2024 (https://iris.who.int/handle/10665/379339). Licence: CC BY-NC-SA 3.0 IGO.
  2. Franco J, Bongaerts B, Metzendorf M, Risso A, Guo Y, Peña Silva L et al. Diabetes as a risk factor for tuberculosis disease. Cochrane Database Syst Rev. 2024 (https://doi.org/10.1002/14651858.CD016013.pub2).
  3. Shen TC, Lin CL, Wei CC, Liao WC, Chen WC, Chen CH et al. Increased risk of tuberculosis in patients with type 1 diabetes mellitus: results from a population-based cohort study in Taiwan. Medicine (Baltimore). 2014;93(16):e96 (https://doi.org/10.1097/md.0000000000000096).
  4. Yoo JE, Kim D, Han K, Rhee SY, Shin DW, Lee H. Diabetes status and association with risk of tuberculosis among Korean adults. JAMA Netw Open. 2021;4(9):e2126099 (https://doi.org/10.1001/jamanetworkopen.2021.26099).
  5. Critchley JA, Carey IM, Harris T, DeWilde S, Hosking FJ, Cook DG. Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diabetes Care. 2018;41(10):2127–35 (https://doi.org/10.2337/dc18-0287).
  6. Liu Q, Li W, Xue M, Chen Y, Du X, Wang C et al. Diabetes mellitus and the risk of multidrug resistant tuberculosis: a meta-analysis. Sci Rep. 2017;7(1):1090 (https://doi.org/10.1038/s41598-017-01213-5).
  7. Yorke E, Atiase Y, Akpalu J, Sarfo-Kantanka O, Boima V, Dey ID. The bidirectional relationship between tuberculosis and diabetes. Tuberc Res Treat. 2017;2017:1702578 (https://doi.org/10.1155/2017/1702578).
  8. IDF Diabetes Atlas, 9th edition. Brussels: International Diabetes Federation; 2019 (https://diabetesatlas.org/atlas/ninth-edition/).
  9. TB and diabetes, Global tuberculosis report 2021 [website]. Geneva: World Health Organization; 2024 (https://www.who.int/publications/digital/global-tuberculosis-report-2021/featured-topics/tb-diabetes).
  10. Noubiap JJ, Nansseu JR, Nyaga UF, Nkeck JR, Endomba FT, Kaze AD et al. Global prevalence of diabetes in active tuberculosis: a systematic review and meta-analysis of data from 2·3 million patients with tuberculosis. Lancet Glob Health. 2019;7(4):e448–60 (https://doi.org/10.1016/s2214-109x(18)30487-x).
  11. Critchley JA, Restrepo BI, Ronacher K, Kapur A, Bremer AA, Schlesinger LS et al. Defining a research agenda to address the converging epidemics of tuberculosis and diabetes: part 1: epidemiology and clinical management. Chest. 2017;152(1):165–73 (https://doi.org/10.1016/j.chest.2017.04.155).
  12. Riza AL, Pearson F, Ugarte-Gil C, Alisjahbana B, van de Vijver S, Panduru NM et al. Clinical management of concurrent diabetes and tuberculosis and the implications for patient services. Lancet Diabetes Endocrinol. 2014;2(9):740–53 (https://doi.org/10.1016/S2213-8587(14)70110-X).
  13. Van Crevel R, Koesoemadinata R, Hill P, Harries A. Clinical management of combined tuberculosis and diabetes. Int J Tuberc Lung Dis. 2018;22(12):1404–10 (https://doi.org/10.5588/ijtld.18.0340).
  14. Ugarte-Gil C, Curisinche M, Herrera-Flores E, Hernandez H, Rios J. Situación de la comorbilidad tuberculosis y diabetes en personas adultas en el Perú, 2016–2018 [Situation of tuberculosis and diabetes comorbidity in adults in Peru, 2016–2018] (in Spanish). Rev Peru Med Exp Salud Públ. 2021;38:254–60 (http://dx.doi. org/10.17843/rpmesp.2021.382.6764).
  15. Baker MA, Harries AD, Jeon CY, Hart JE, Kapur A, Lönnroth K et al. The impact of diabetes on tuberculosis treatment outcomes: a systematic review. BMC Med. 2011;9:81 (https://doi.org/10.1186/1741-7015-9-81).
  16. WHO Global Diabetes Compact [website]. Geneva: World Health Organization; 2024 (https://www.who.int/initiatives/the-who-global-diabetes-compact).
  17. Gear up to end TB: introducing the end TB strategy. Geneva: World Health Organization; 2015 (https://iris.who.int/handle/10665/156394).
  18. Political declaration of the high-level meeting of the General Assembly on the fight against tuberculosis, Resolution adopted by the General Assembly, 10 October 2018. New York: United Nations; 2018. (A/RES/73/3; https://docs.un.org/en/A/RES/73/3).
  19. Political declaration of the third high-level meeting of the General Assembly on the prevention and control of non-communicable diseases, Resolution adopted by the General Assembly 10 October 2018, New York: United Nations; 2018 (A/RES/73/2; https://digitallibrary.un.org/record/1648984/files/A_RES_73_2-EN.pdf).
  20. Political declaration of the high-level meeting on the fight against tuberculosis, Resolution adopted by the General Assembly, 5 October 2023, New York: United Nations; 2023. (A/RES/78/5; https://digitallibrary.un.org/record/4025280/files/A_RES_78_5-EN.pdf).
  21. Collaborative framework for care and control of tuberculosis and diabetes. Geneva: World Health Organization; 2011 (https://iris.who.int/handle/10665/44698).
  22. Jarde A, Siqueira N, Afaq S, Naz F, Irfan M, Tufail P et al. Addressing TB multimorbidity in policy and practice: An exploratory survey of TB providers in 27 high-TB burden countries. PLoS Glob Public Health. 2022;2(12):e0001205 (https://doi.org/https://doi.org/10.1371/journal.pgph.0001205).
  23. Salifu RS, Hlongwa M, Hlongwana K. Implementation of the WHO’s collaborative framework for the management of tuberculosis and diabetes: a scoping review. BMJ Open. 2021;11(11):e047342 (https://doi.org/http://dx.doi.org/10.1136/bmjopen-2020-047342).
  24. WHO consolidated guidelines on tuberculosis. Module 1: prevention – tuberculosis preventive treatment. Geneva: World Health Organization; 2020 (https://iris.who.int/handle/10665/331170). Licence: CC BY-NC-SA 3.0 IGO.
  25. WHO consolidated guidelines on tuberculosis: Module 1: prevention – infection prevention and control. Geneva: World Health Organization; 2022 (https://iris.who.int/handle/10665/362508). Licence: CC BY-NC-SA 3.0 IGO.
  26. WHO consolidated guidelines on tuberculosis. Module 2: screening – systematic screening for tuberculosis disease. Geneva: World Health Organization; 2020 (https://iris.who.int/handle/10665/340255). Licence: CC BYNC-SA 3.0 IGO.
  27. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis – rapid diagnostics for tuberculosis detection. Geneva: World Health Organization; 2020 (https://iris.who.int/handle/10665/332862). Licence: CC BY-NC-SA 3.0 IGO.
  28. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis – tests for tuberculosis infection. Geneva: World Health Organization; 2022 (https://iris.who.int/handle/10665/362936). Licence: CC BY-NC-SA 3.0 IGO.
  29. WHO consolidated guidelines on tuberculosis. Module 4: treatment – drug-resistant tuberculosis treatment. Geneva: World Health Organization 2020 (https://iris.who.int/handle/10665/332397). Licence: CC BY-NC-SA 3.0 IGO.
  30. WHO consolidated guidelines on tuberculosis. Module 4: treatment – drug-susceptible tuberculosis treatment. Geneva: World Health Organization; 2022 (https://iris.who.int/handle/10665/353829). Licence: CC BY-NC-SA 3.0 IGO.
  31. WHO consolidated guidelines on tuberculosis. Module 4: treatment – tuberculosis care and support. Geneva: World Health Organization; 2022 (https://iris.who.int/handle/10665/353399). Licence: CC BY-NC-SA 3.0 IGO.
  32. WHO consolidated guidelines on tuberculosis. Module 5: management of tuberculosis in children and adolescents. Geneva: World Health Organization; 2022 (https://iris.who.int/handle/10665/352522). Licence: CC BY-NCSA 3.0 IGO.
  33. Diagnosis and management of type 2 diabetes (HEARTS-D). Geneva: World Health Organization; 2020 (https://apps.who.int/iris/handle/10665/331710). Licence: CC BY-NC-SA 3.0 IGO.
  34. WHO package of essential noncommunicable (PEN) disease interventions for primary health care. Geneva: World Health Organization; 2020 (https://iris.who.int/handle/10665/334186). Licence: CC BY-NC-SA 3.0 IGO.
  35. Framework for collaborative action on tuberculosis and comorbidities. Geneva: World Health Organization; 2022 (https://iris.who.int/handle/10665/361989). Licence: CC BY-NC-SA 3.0 IGO.
  36. Okot-Chono R, Mugisha F, Adatu F, Madraa E, Dlodlo R, Fujiwara P. Health system barriers affecting the implementation of collaborative TB-HIV services in Uganda. Int J Tuberc Lung Dis. 2009;13(8):955–61 (https://pubmed.ncbi.nlm.nih.gov/19723374/).
  37. Eang MT, Vun MC, Eam KK, Sovannarith S, Sopheap S, Bora N et al. The multi-step process of building TB/HIV collaboration in Cambodia. Health Res Policy Syst. 2012;10:34 (https://doi.org/10.1186/1478-4505-10-34).
  38. Multisectoral accountability framework to accelerate progress to end tuberculosis by 2030. Geneva: World Health Organization; 2019 (https://iris.who.int/handle/10665/331934). Licence: CC BY-NC-SA 3.0 IGO.
  39. Guidance for national strategic planning for tuberculosis. Geneva: World Health Organization; 2022 (https://iris.who.int/handle/10665/361418). Licence: CC BY-NC-SA 3.0 IGO.
  40. Integrating the prevention and control of noncommunicable diseases in HIV/AIDS, tuberculosis, and sexual and reproductive health programmes: implementation guidance. Geneva: World Health Organization; 2023 (https://iris.who.int/handle/10665/366691). Licence: CC BY-NC-SA 3.0 IGO.
  41. Guidance on engagement of communities and civil society to end tuberculosis. Geneva: World Health Organization; 2023 (https://iris.who.int/handle/10665/373321). Licence: CC BY-NC-SA 3.0 IGO.
  42. Consolidated guidance on tuberculosis – data generation and use. Module 1. Tuberculosis surveillance. Geneva: World Health Organization; 2024 (https://iris.who.int/handle/10665/376612). Licence: CC BY-NC-SA 3.0 IGO.
  43. WHO STEPS surveillance manual: The WHO STEPwise approach to chronic disease risk factor surveillance. Geneva: World Health Organization; 2005 (https://iris.who.int/handle/10665/43376).
  44. Consolidated guidance on tuberculosis – data generation and use. Module 3. National tuberculosis prevalence surveys. Geneva: World Health Organization; [in press].
  45. Tuberculosis patient cost surveys: a hand book. Geneva: World Health Organization; 2017 (https://iris.who.int/handle/10665/259701). Licence: CC BY-NC-SA 3.0 IGO.
  46. Guidance on social protection for people affected by tuberculosis. Geneva: World Health Organization and International Labour Organization; 2023 (https://iris.who.int/handle/10665/376542). Licence: CC BY-NC-SA 3.0 IGO.
  47. Harmonized health facility assessment (HHFA): comprehensive guide. Geneva: World Health Organization; 2022 (https://iris.who.int/handle/10665/365534). Licence: CC BY-NC-SA 3.0 IGO.
  48. Inter-agency social protection assessment tools [website]. Inter Agency Social Protection Assessment; 2024 (https://ispatools.socialprotection.org/).
  49. Guidance on conducting reviews of tuberculosis programmes. Geneva: World Health Organization; 2023 (https://iris.who.int/handle/10665/376311). Licence: CC BY-NC-SA 3.0 IGO.
  50. Bowman S, Unwin N, Critchley J, Capewell S, Husseini A, Maziak W et al. Use of evidence to support healthy public policy: a policy effectiveness-feasibility loop. Bull World Health Organ. 2012;90(11):847–53 (https://pmc.ncbi.nlm.nih.gov/articles/PMC3506406/).
  51. Murphy JK, Michalak EE, Colquhoun H, Woo C, Ng CH, Parikh SV et al. Methodological approaches to situational analysis in global mental health: a scoping review. Glob Ment Health (Camb). 2019;6:e11 (https://doi.org/10.1017/gmh.2019.9).
  52. People-centred framework for tuberculosis programme planning and prioritization – User guide. Geneva: World Health Organization; 2019 (https://iris.who.int/handle/10665/329472). Licence: CC BY-NC-SA 3.0 IGO.
  53. Nyirenda JLZ, Bockey A, Wagner D, Lange B. Effect of tuberculosis (TB) and diabetes mellitus (DM) integrated healthcare on bidirectional screening and treatment outcomes among TB patients and people living with DM in developing countries: a systematic review. Pathog Glob Health. 2023;117(1):36–51 (https://doi.org/10.1080/20477724.2022.2046967).
  54. Zhang XL, Li SG, Li HT, Li GX, Guo XY, Wang Y et al. Integrating tuberculosis screening into annual health examinations for the rural elderly improves case detection. Int J Tuberc Lung Dis. 2015;19(7):787–91 (https://doi.org/10.5588/ijtld.14.0617).
  55. Castellanos-Joya M, Delgado-Sánchez G, Ferreyra-Reyes L, Cruz-Hervert P, Ferreira-Guerrero E, Ortiz-Solís G et al. Results of the implementation of a pilot model for the bidirectional screening and joint management of patients with pulmonary tuberculosis and diabetes mellitus in Mexico. PLoS One. 2014;9(9):e106961 (https://doi.org/10.1371/journal.pone.0106961).
  56. Foo C, Shrestha P, Wang L, Du Q, García-Basteiro AL, Abdullah AS et al. Integrating tuberculosis and noncommunicable diseases care in low- and middle-income countries (LMICs): A systematic review. PLoS Med. 2022;19(1):e1003899 (https://doi.org/10.1371/journal.pmed.1003899).
  57. Chamba NG, Byashalira KC, Christensen DL, Ramaiya KL, Kapyolo EP, Shayo PJ et al. Experiences and perceptions of participants on the pathway towards clinical management of dual tuberculosis and diabetes mellitus in Tanzania. Glob Health Action. 2022;15(1):2143044 (https://doi.org/10.1080/16549716.2022.2143044).
  58. Legido-Quigley H, Montgomery CM, Khan P, Atun R, Fakoya A, Getahun H et al. Integrating tuberculosis and HIV services in low- and middle-income countries: a systematic review. Trop Med Int Health. 2013;18(2):199–211 (https://doi.org/10.1111/tmi.12029).
  59. China: Multidisciplinary teams and integrated service delivery across levels of care. Country case studies on primary health care. Geneva: World Health Organization; 2018 (https://apps.who.int/iris/handle/10665/326085).
  60. Pasha A, Siddiqui H, Ali S, Brooks MB, Maqbool NR, Khan AJ. Impact of integrating mental health services within existing tuberculosis treatment facilities. Med Access Point Care. 2021;5:23992026211011314 (https://doi.org/10.1177/23992026211011314).
  61. Jia W. Diabetes care in China: Innovations and implications. J Diabetes Invest. 2022;13(11):1795–7 (https://doi.org/10.1111/jdi.13908).
  62. Habib SS, Rafiq S, Jamal WZ, Ayub SM, Ferrand RA, Khan A et al. Engagement of private healthcare providers for case finding of tuberculosis and diabetes mellitus in Pakistan. BMC Health Serv Res. 2020;20(1):328 (https://doi.org/10.1186/s12913-020-05217-2).
  63. Guide to develop a national action plan on public-private mix for tuberculosis prevention and care. Geneva: World Health Organization; 2017 (https://iris.who.int/handle/10665/361884). Licence: CC BY-NC-SA 3.0 IGO.
  64. Continuity and coordination of care: a practice brief to support implementation of the WHO framework on integrated people-centred health services. Geneva: World Health Organization; 2018 (https://apps.who.int/iris/handle/10665/274628). Licence: CC BY-NC-SA 3.0 IGO.
  65. The Global Fund [website]. The Global Fund to Fight AIDS, Tuberculosis and Malaria; 2024. (https://www.theglobalfund.org/en/).
  66. The Global Drug Facility [website]. Stop TB Partnership - hosted by UNOPS; 2019. (https://www.stoptb.org/facilitate-access-to-tb-drugs-diagnostics/global-drug-facility-gdf).
  67. University of Oslo. DHIS2 [website]. DHIS2. (https://dhis2.org/).
  68. UHC service package delivery & implementation (SPDI) tool [website]. Geneva: World Health Organization; 2024 (https://www.who.int/universal-health-coverage/compendium/related-tools).
  69. HEARTS technical package for cardiovascular disease management in primary health care: access to essential medicines and technology. Geneva: World Health Organization; 2018 (https://iris.who.int/handle/10665/260420).
  70. WHO list of priority medical devices for management of cardiovascular diseases and diabetes. Geneva: World Health Organization; 2021 (https://iris.who.int/handle/10665/341967). Licence: CC BY-NC-SA 3.0 IGO.
  71. The selection and use of essential medicines 2023: web annex A. World Health Organization model list of essential medicines: 23rd list (2023). Geneva: World Health Organization; 2023 (https://iris.who.int/handle/10665/371090). Licence: CC BY-NC-SA 3.0 IGO.
  72. The selection and use of essential medicines 2023: web annex B. World Health Organization model list of essential medicines for children: 9th list (2023). Geneva: World Health Organization; 2023 (https://iris.who.int/handle/10665/371091). Licence: CC BY-NC-SA 3.0 IGO.
  73. WHO framework for meaningful engagement of people living with noncommunicable diseases, and mental health and neurological conditions. Geneva: World Health Organization; 2023 (https://iris.who.int/handle/10665/367340). Licence: CC BY-NC-SA 3.0 IGO.
  74. Thomas LS, Buch E, Pillay Y. An analysis of the services provided by community health workers within an urban district in South Africa: a key contribution towards universal access to care. Hum Resour Health. 2021;19(1):22 (https://doi.org/10.1186/s12960-021-00565-4).
  75. Datiko DG, Lindtjørn B. Health extension workers improve tuberculosis case detection and treatment success in southern Ethiopia: a community randomized trial. PLoS One. 2009;4(5):e5443 (https://doi.org/10.1371/journal.pone.0005443).
  76. Corbett EL, Bandason T, Duong T, Dauya E, Makamure B, Churchyard GJ et al. Comparison of two active case-finding strategies for community-based diagnosis of symptomatic smear-positive tuberculosis and control of infectious tuberculosis in Harare, Zimbabwe (DETECTB): a cluster-randomised trial. Lancet. 2010;376(9748):1244–53 (https://doi.org/10.1016/s0140-6736(10)61425-0).
  77. Lugada E, Levin J, Abang B, Mermin J, Mugalanzi E, Namara G et al. Comparison of home and clinic-based HIV testing among household members of persons taking antiretroviral therapy in Uganda: results from a randomized trial. J Acquir Immune Defic Syndr. 2010;55(2):245–52 (https://doi.org/10.1097/QAI.0b013e3181e9e069).
  78. Miti S, Mfungwe V, Reijer P, Maher D. Integration of tuberculosis treatment in a community-based home care programme for persons living with HIV/AIDS in Ndola, Zambia. Int J Tuberc Lung Dis. 2003;7(9 Suppl 1):S92–8 (https://pubmed.ncbi.nlm.nih.gov/12971660/).
  79. Gilbert JA, Shenoi SV, Moll AP, Friedland GH, Paltiel AD, Galvani AP. Cost-effectiveness of community-based TB/HIV screening and linkage to care in rural South Africa. PLoS One. 2016;11(12):e0165614 (https://doi.org/10.1371/journal.pone.0165614).
  80. Zayar NN, Chotipanvithayakul R, Htet KKK, Chongsuvivatwong V. Programmatic cost-effectiveness of a secondtime visit to detect new tuberculosis and diabetes mellitus in TB contact tracing in Myanmar. Int J Environ Res Public Health. 2022;19(23) (https://doi.org/10.3390/ijerph192316090).
  81. WHO guideline on health policy and system support to optimize community health worker programmes. Geneva: World Health Organization; 2018 (https://iris.who.int/handle/10665/275474). Licence: CC BY-NC-SA 3.0 IGO.
  82. Tanimura T, Jaramillo E, Weil D, Raviglione M, Lönnroth K. Financial burden for tuberculosis patients in low- and middle-income countries: a systematic review. Eur Respir J. 2014;43(6):1763–75 (https://doi.org/10.1183/09031936.00193413).
  83. Rupani MP, Vyas S. A sequential explanatory mixed-methods study on costs incurred by patients with tuberculosis comorbid with diabetes in Bhavnagar, western India. Sci Rep. 2023;13(1):150 (https://doi.org/10.1038/s41598-023-27494-7).
  84. WHO guideline: recommendations on digital interventions for health system strengthening. Geneva: World Health Organization; 2019 (https://iris.who.int/handle/10665/311980). Licence: CC BY-NC-SA 3.0 IGO.
  85. Hangaard S, Laursen SH, Andersen JD, Kronborg T, Vestergaard P, Hejlesen O et al. The effectiveness of telemedicine solutions for the management of type 2 diabetes: a systematic review, meta-analysis, and meta-regression. J Diabetes Sci Technol. 2023;17(3):794–825 (https://doi.org/10.1177/19322968211064633).
  86. Liu X, Thompson J, Dong H, Sweeney S, Li X, Yuan Y et al. Digital adherence technologies to improve tuberculosis treatment outcomes in China: a cluster-randomised superiority trial. Lancet Glob Health. 2023;11(5):e693–703 (https://doi.org/10.1016/s2214-109x(23)00068-2).
  87. WHO policy on collaborative TB/HIV activities. Guidelines for national programmes and other stakeholders. Geneva: World Health Organization; 2012 (https://apps.who.int/iris/handle/10665/44789).
  88. Political declaration of the third high-level meeting of the General Assembly on the prevention and control of noncommunicable diseases. Report by the Director-General. Executive Board. 150th Session. Geneva: World Health Organization; 11 January 2022. (EB150/7; https://apps.who.int/gb/ebwha/pdf_files/EB150/B150_7-en.pdf).
  89. Seventy-fifth World Health Assembly. Resolutions and decisions, annexes. 22–28 May 2022. Geneva: World Health Organization; 2022 (WHA75/2022/REC/1). (https://iris.who.int/handle/10665/365610).
  90. Operational framework for primary health care: transforming vision into action. Geneva: World Health Organization; New York: United Nations Children’s Fund; 2020 (https://apps.who.int/iris/handle/10665/337641). Licence: CC BY-NC-SA 3.0 IGO.
  91. Handbook for the use of digital technologies to support tuberculosis medication adherence. Geneva: World Health Organization; 2017 (https://iris.who.int/handle/10665/259832). Licence: CC BY-NC-SA 3.0 IGO.
  92. Ethics guidance for the implementation of the End TB strategy. Geneva: World Health Organization; 2017 (https://apps.who.int/iris/handle/10665/254820). Licence: CC BY-NC-SA 3.0 IGO.
  93. Global strategy for tuberculosis research and innovation. Geneva: World Health Organization; 2020 (https://iris.who.int/handle/10665/336076). Licence: CC BY-NC-SA 3.0 IGO.
  94. Hayashi S, Chandramohan D. Risk of active tuberculosis among people with diabetes mellitus: systematic review and metaanalysis. Tropical Med Int Health. 2018;23(10):1058–70 (https://doi.org/10.1111/tmi.13133).
  95. Al-Rifai RH, Pearson F, Critchley JA, Abu-Raddad LJ. Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis. PLoS One. 2017;12(11):e0187967 (https://doi.org/10.1371/journal.pone.0187967).
  96. Workneh MH, Bjune GA, Yimer SA. Prevalence and associated factors of tuberculosis and diabetes mellitus comorbidity: a systematic review. PLoS One. 2017;12(4):e0175925 (https://doi.org/10.1371/journal.pone.0175925).
  97. Brostrom RJ, Largen A, Nasa JN, Jeadrik G, Yamada S, Yadav S et al. TB-free Ebeye: results from integrated TB and noncommunicable disease case finding in Ebeye, Marshall Islands. J Clin Tuberc Other Mycobact Dis. 2024;35:100418 (https://doi.org/https://doi.org/10.1016/j.jctube.2024.100418).
  98. Leung CC, Lam TH, Chan WM, Yew WW, Ho KS, Leung GM et al. Diabetic control and risk of tuberculosis: a cohort study. Am J Epidemiol. 2008;167(12):1486–94 (https://doi.org/10.1093/aje/kwn075).
  99. Viney K, Mills T, Harley D. Tuberculosis and diabetes mellitus: a dose-response relationship between the odds of tuberculosis and HbA1c. Int J Tuberc Lung Dis. 2019;23(10):1055–9 (https://doi.org/10.5588/ijtld.18.0657).
  100. Liu Q, You N, Wen J, Wang J, Ge Y, Shen Y et al. Yield and efficiency of a population-based mass tuberculosis screening intervention among persons with diabetes in Jiangsu Province, China. Clin Infect Dis. 2023;77(1):103– 11 (https://doi.org/10.1093/cid/ciad118).
  101. Magis-Escurra C, Carvalho A, Kritski A, Girardi E. Comorbidities. In: Migliori G, Bothamley G, Duarte R, Rendon A, editors. Tuberculosis (ERS Monograph). Sheffield: European Respiratory Society; 2018:276–90 (https://doi.org/https://doi.org/10.1183/2312508X.10022017)
  102. Van’t Hoog A, Viney K, Biermann O, Yang B, Leeflang MM, Langendam MW. Symptom- and chest-radiography screening for active pulmonary tuberculosis in HIV-negative adults and adults with unknown HIV status. Cochrane Database Syst Rev. 2022;3(3):CD010890 (https://doi.org/10.1002/14651858.CD010890.pub2).
  103. Makuka GJ, Balandya E, Munseri P. Burden of active pulmonary tuberculosis among patients with diabetes in Dar es Salaam, Tanzania: a cross-sectional study. BMJ Open. 2022;12(11):e065969 (https://doi.org/10.1136/bmjopen-2022-065969).
  104. Berkowitz N, Okorie A, Goliath R, Levitt N, Wilkinson RJ, Oni T. The prevalence and determinants of active tuberculosis among diabetes patients in Cape Town, South Africa, a high HIV/TB burden setting. Diabetes Res Clin Pract. 2018;138:16–25 (https://doi.org/10.1016/j.diabres.2018.01.018).
  105. Habib SS, Rafiq S, Zaidi SMA, Ferrand RA, Creswell J, Van Ginneken B et al. Evaluation of computer aided detection of tuberculosis on chest radiography among people with diabetes in Karachi, Pakistan. Sci Rep. 2020;10(1):6276 (https://doi.org/10.1038/s41598-020-63084-7).
  106. Koesoemadinata RC, Kranzer K, Livia R, Susilawati N, Annisa J, Soetedjo NNM et al. Computer-assisted chest radiography reading for tuberculosis screening in people living with diabetes mellitus. Int J Tuberc Lung Dis. 2018;22(9):1088–94 (https://doi.org/10.5588/ijtld.17.0827).
  107. Jerene D, Muleta C, Dressie S, Ahmed A, Tarekegn G, Haile T et al. The yield of chest X-ray based versus symptombased screening among patients with diabetes mellitus in public health facilities in Addis Ababa, Ethiopia. J Clin Tuberc Other Mycobact Dis. 2022;29:100333 (https://doi.org/10.1016/j.jctube.2022.100333).
  108. Salifu RS, Hlongwana KW. Barriers and facilitators to bidirectional screening of TB-DM in Ghana: Healthcare workers’ perspectives. PLoS One. 2020;15(7):e0235914 (https://doi.org/10.1371/journal.pone.0235914).
  109. Huangfu P, Ugarte-Gil C, Golub J, Pearson F, Critchley J. The effects of diabetes on tuberculosis treatment outcomes: an updated systematic review and meta-analysis. Int J Tuberc Lung Dis. 2019;23(7):783–96 (https://doi.org/10.5588/ijtld.18.0433).
  110. WHO standard: universal access to rapid tuberculosis diagnostics. Geneva: World Health Organization; 2023 (https://apps.who.int/iris/handle/10665/366854). Licence: CC BY-NC-SA 3.0 IGO.
  111. Practical manual on tuberculosis laboratory strengthening, 2022 update. Geneva: World Health Organization; 2022 (https://iris.who.int/handle/10665/365134). Licence: CC BY-NC-SA 3.0 IGO.
  112. Laboratory diagnosis of tuberculosis by sputum microscopy: the handbook. Global edition. Geneva: Global Laboratory Initiative; 2014 (https://www.stoptb.org/file/10502/download).
  113. WHO operational handbook on tuberculosis. Module 1: prevention – infection prevention and control. Geneva: World Health Organization; 2023 (https://iris.who.int/handle/10665/372738). Licence: CC BY-NC-SA 3.0 IGO.
  114. Zayar NN, Sangthong R, Saw S, Aung ST, Chongsuvivatwong V. Combined tuberculosis and diabetes mellitus screening and assessment of glycaemic control among household contacts of tuberculosis patients in Yangon, Myanmar. Trop Med Infect Dis. 2020;5(3) (https://doi.org/10.3390/tropicalmed5030107).
  115. WHO operational handbook on tuberculosis. Module 1: prevention – tuberculosis preventive treatment. 2nd ed. Geneva: World Health Organization; 2024 (https://iris.who.int/handle/10665/378535). Licence: CC BY-NC-SA 3.0 IGO.
  116. WHO operational handbook on tuberculosis. Module 4: treatment – drug-resistant tuberculosis treatment, 2022 update. Geneva: World Health Organization; 2022 (https://iris.who.int/handle/10665/365333). Licence: CC BYNC-SA 3.0 IGO.
  117. Miller HV, Cao AA, McClelland CM, Lee MS. Linezolid optic neuropathy. Curr Opin Ophthalmol. 2023;34(6):481–6 (https://doi.org/10.1097/icu.0000000000000995).
  118. WHO consolidated guidelines on tuberculosis: module 4: treatment: drug-resistant tuberculosis treatment: web annexes, 2022 update. Geneva: World Health Organization; 2022 (https://iris.who.int/handle/10665/365284). Licence: CC BY-NC-SA 3.0 IGO.
  119. Cho SK, Yoon JS, Lee MG, Lee DH, Lim LA, Park K et al. Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin Pharmacol Ther. 2011;89(3):416–21 (https://doi.org/10.1038/clpt.2010.266).
  120. WHO operational handbook on tuberculosis Module 4: Treatment – drug-susceptible tuberculosis treatment. Geneva: World Health Organization; 2022 (https://iris.who.int/handle/10665/354548). Licence: CC BY-NC-SA 3.0 IGO.
  121. Feldman JM, Chapman B. Monoamine oxidase inhibitors: nature of their interaction with rabbit pancreatic islets to alter insulin secretion. Diabetologia. 1975;11(6):487–94 (https://doi.org/10.1007/bf01222097).
  122. Cooper AJ, Ashcroft G. Potentiation of insulin hypoglycaemia by M.A.O.I. antidepressant drugs. Lancet. 1966;1(7434):407–9 (https://doi.org/10.1016/s0140-6736(66)91399-7).
  123. Wickstrom L, Pettersson K. Treatment of diabetics with monoamine-oxidase inhibitors. Lancet. 1964;2(7367):995–7 (https://doi.org/10.1016/s0140-6736(64)90936-5).
  124. Lodise T, Graves J, Miller C, Mohr JF, Lomaestro B, Smith RP. Effects of gatifloxacin and levofloxacin on rates of hypoglycemia and hyperglycemia among elderly hospitalized patients. Pharmacotherapy. 2007;27(11):1498–505 (https://doi.org/10.1592/phco.27.11.1498).
  125. Frothingham R. Glucose homeostasis abnormalities associated with use of gatifloxacin. Clin Infect Dis. 2005;41(9):1269–76 (https://doi.org/10.1086/496929).
  126. Aspinall SL, Good CB, Jiang R, McCarren M, Dong D, Cunningham FE. Severe dysglycemia with the fluoroquinolones: a class effect? Clin Infect Dis. 2009;49(3):402–8 (https://doi.org/10.1086/600294).
  127. Clore JN, Thurby-Hay L. Glucocorticoid-induced hyperglycemia. Endocr Pract. 2009;15(5):469–74 (https://doi.org/10.4158/ep08331.Rar).
  128. Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. Geneva: World Health Organization; 2021 (https://iris.who.int/handle/10665/342899).
  129. Consolidated telemedicine implementation guide. Geneva: World Health Organization; 2022 (https://iris.who.int/handle/10665/364221). Licence: CC BY-NC-SA 3.0 IGO.
  130. Bhargava A, Bhargava M. Tuberculosis deaths are predictable and preventable: Comprehensive assessment and clinical care is the key. J Clin Tuberc Other Mycobact Dis. 2020;19:100155 (https://doi.org/10.1016/j.jctube.2020.100155).
  131. Meregildo-Rodriguez ED, Asmat-Rubio MG, Zavaleta-Alaya P, Vásquez-Tirado GA. Effect of oral antidiabetic drugs on tuberculosis risk and treatment outcomes: systematic review and meta-analysis. Trop Med Infect Dis. 2022;7(11) (https://doi.org/10.3390/tropicalmed7110343).
  132. Golub JE, Mok Y, Hong S, Jung KJ, Jee SH, Samet JM. Diabetes mellitus and tuberculosis in Korean adults: impact on tuberculosis incidence, recurrence and mortality. Int J Tuberc Lung Dis. 2019;23(4):507–13 (https://doi.org/10.5588/ijtld.18.0103).
  133. Qiu H, Shi Y, Li Y, Shen X, Li R, Yang Q et al. Incident rate and risk factors for tuberculosis among patients with type 2 diabetes: retrospective cohort study in Shanghai, China. Trop Med Int Health. 2017;22(7):830–8 (https://doi.org/10.1111/tmi.12884).
  134. Zhou G, Guo X, Cai S, Zhang Y, Zhou Y, Long R et al. Diabetes mellitus and latent tuberculosis infection: an updated meta-analysis and systematic review. BMC Infect Dis. 2023;23(1):770 (https://doi.org/10.1186/s12879-023-08775-y).
  135. WHO operational handbook on tuberculosis. Module 3: diagnosis – Tests for tuberculosis infection. Geneva: World Health Organization; 2022 (https://iris.who.int/handle/10665/363335). Licence: CC BY-NC-SA 3.0 IGO.
  136. WHO consolidated guidelines on tuberculosis. Module 1: prevention: tuberculosis preventive treatment. Geneva: World Health Organization; 2024 (https://iris.who.int/handle/10665/378536). Licence: CC BY-NC-SA 3.0 IGO.
  137. Tamez-Torres KM, Mongua-Rodríguez N, Ferreyra-Reyes L, Torres-Gonzalez P, Delgado-Sánchez G, MartínezHernández M et al. Safety and tolerability of six months of isoniazid plus pyridoxine or three months of rifampicin for tuberculosis among subjects with diabetes mellitus: a randomized trial. Microorganisms. 2023;11(8) (https://doi.org/10.3390/microorganisms11081917).
  138. Ntinginya NE, Te Brake L, Sabi I, Chamba N, Kilonzo K, Laizer S et al. Rifapentine and isoniazid for prevention of tuberculosis in people with diabetes (PROTID): protocol for a randomised controlled trial. Trials. 2022;23(1):480 (https://doi.org/10.1186/s13063-022-06296-8).
  139. Lin Y, Harries AD. Tuberculosis infection control measures in diabetes clinics in China: a rapid assessment of 10 hospitals. Trop Med Int Health. 2015;20(9):1196–200 (https://doi.org/10.1111/tmi.12537).
  140. Guidelines on core components of infection prevention and control programmes at the national and acute health care facility level. Geneva: World Health Organization; 2016 (https://iris.who.int/handle/10665/251730). Licence: CC BY-NC-SA 3.0 IGO.
  141. Zhang A, Wang J, Wan X, Zhang Z, Zhao S, Guo Z et al. A meta-analysis of the effectiveness of telemedicine in glycemic management among patients with type 2 diabetes in primary care. Int J Environ Res Public Health. 2022;19(7) (https://doi.org/10.3390/ijerph19074173).
  142. Greenwood DA, Gee PM, Fatkin KJ, Peeples M. A systematic review of reviews evaluating technology-enabled diabetes self-management education and support. J Diabetes Sci Technol. 2017;11(5):1015–27 (https://doi.org/10.1177/1932296817713506).
  143. Diabetes [website]. Geneva: World Health Organization; 2024 (https://www.who.int/health-topics/diabetes).
  144. Byashalira KC, Chamba NG, Alkabab Y, Mbelele PM, Ntinginya NE, Ramaiya KL et al. Clinical-demographic markers for improving diabetes mellitus diagnosis in people with tuberculosis in Tanzania. BMC Infect Dis. 2022;22(1):260 (https://doi.org/10.1186/s12879-022-07249-x).
  145. Workneh MH, Bjune GA, Yimer SA. Prevalence and associated factors of diabetes mellitus among tuberculosis patients in south-eastern Amhara Region, Ethiopia: a cross sectional study. PLoS One. 2016;11(1):e0147621 (https://doi.org/10.1371/journal.pone.0147621).
  146. Jerene D, Muleta C, Ahmed A, Tarekegn G, Haile T, Bedru A et al. High rates of undiagnosed diabetes mellitus among patients with active tuberculosis in Addis Ababa, Ethiopia. J Clin Tuberc Other Mycobact Dis. 2022;27:100306 (https://doi.org/10.1016/j.jctube.2022.100306).
  147. McEbula V, Crowther NJ, Nagel SE, George JA. Diabetes and abnormal glucose tolerance in subjects with tuberculosis in a South African urban center. Int J Tuberc Lung Dis. 2017;21(2):208–13 (https://doi.org/10.5588/ijtld.15.0831).
  148. Pizzol D, Di Gennaro F, Chhaganlal KD, Fabrizio C, Monno L, Putoto G et al. Prevalence of diabetes mellitus in newly diagnosed pulmonary tuberculosis in Beira, Mozambique. Afr Health Sci. 2017;17(3):773–9 (https://doi.org/10.4314/ahs.v17i3.20).
  149. Diarra B, Tolofoudie M, Sarro YS, Togo ACG, Bane S, Nientao I et al. Diabetes mellitus among new tuberculosis patients in Bamako, Mali. J Clin Tuberc Other Mycobact Dis. 2019;17:100128 (https://doi.org/10.1016/j.jctube.2019.100128).
  150. Ugarte-Gil C, Alisjahbana B, Ronacher K, Riza AL, Koesoemadinata RC, Malherbe ST et al. Diabetes mellitus among pulmonary tuberculosis patients from 4 tuberculosis-endemic countries: the TANDEM study. Clin Infect Dis. 2020;70(5):780–8 (https://doi.org/10.1093/cid/ciz284).
  151. Chen HG, Liu M, Jiang SW, Gu FH, Huang SP, Gao TJ et al. Impact of diabetes on diagnostic delay for pulmonary tuberculosis in Beijing. Int J Tuberc Lung Dis. 2014;18(3):267–71 (https://doi.org/10.5588/ijtld.13.0140).
  152. Liu Q, You N, Pan H, Shen Y, Lu P, Wang J et al. Glycemic trajectories and treatment outcomes of patients with newly diagnosed tuberculosis: a prospective study in eastern China. Am J Respir Crit Care Med. 2021;204(3):347–56 (https://doi.org/10.1164/rccm.202007-2634OC).
  153. Zhao Q, Xiao X, Lu W, Qiu LX, Zhou CM, Jiang WL et al. Screening diabetes in tuberculosis patients in eastern rural China: a community-based cross-sectional study. Int J Tuberc Lung Dis. 2016;20(10):1370–6 (https://doi.org/10.5588/ijtld.16.0045).
  154. Grint D, Alisjhabana B, Ugarte-Gil C, Riza AL, Walzl G, Pearson F et al. Accuracy of diabetes screening methods used for people with tuberculosis, Indonesia, Peru, Romania, South Africa. Bull World Health Organ. 2018;96(11):738–49 (https://pmc.ncbi.nlm.nih.gov/articles/PMC6239004/).
  155. Baghaei P, Tabarsi P, Marjani M, Moniri A, Masjedi MR. Screening for diabetes mellitus in tuberculosis patients in a referral center in Iran. Infect Dis (Lond). 2015;47(7):472–6 (https://doi.org/10.3109/23744235.2015.1018317).
  156. Aftab H, Christensen DL, Ambreen A, Jamil M, Garred P, Petersen JH et al. Tuberculosis-related diabetes: Is it reversible after complete treatment? Am J Trop Med Hyg. 2017;97(4):1099–102 (https://doi.org/10.4269/ajtmh.16-0816).
  157. Ca J, Bm M, Pinnelli VB, Kandi V, As S, Mathew HA et al. The association of pulmonary tuberculosis, abnormal glucose tolerance, and type 2 diabetes mellitus: a hospital-based cross-sectional study. Cureus. 2021;13(11):e19758 (https://doi.org/10.7759/cureus.19758).
  158. Kornfeld H, West K, Kane K, Kumpatla S, Zacharias RR, Martinez-Balzano C et al. High prevalence and heterogeneity of diabetes in patients with TB in South India: a report from the Effects of Diabetes on Tuberculosis Severity (EDOTS) study. Chest. 2016;149(6):1501–8 (https://doi.org/10.1016/j.chest.2016.02.675).
  159. Kornfeld H, Procter-Gray E, Kumpatla S, Kane K, Li W, Magee MJ et al. Longitudinal trends in glycated hemoglobin during and after tuberculosis treatment. Diabetes Res Clin Pract. 2023;196:110242 (https://doi.org/https://doi.org/10.1016/j.diabres.2023.110242).
  160. Kyaw Soe T, Soe KT, Satyanarayana S, Saw S, San CC, Aung ST. Gaps in implementing bidirectional screening for tuberculosis and diabetes mellitus in Myanmar: an operational research study. Trop Med Infect Dis. 2020;5(1):19 (https://doi.org/10.3390/tropicalmed5010019).
  161. Alkabab YM, Biswas S, Ahmed S, Paul K, Nagajyothi J, Banu S et al. Differentiating transient from persistent diabetic range hyperglycemia in a cohort of people completing tuberculosis treatment in Dhaka, Bangladesh. PloS One. 2021;16(11):e0260389 (https://doi.org/10.1371/journal.pone.0260389).
  162. Restrepo BI, Schlesinger LS. Impact of diabetes on the natural history of tuberculosis. Diabetes Res Clin Pract. 2014;106(2):191–9 (https://doi.org/10.1016/j.diabres.2014.06.011).
  163. Global report on diabetes. Geneva: World Health Organization; 2016 (https://iris.who.int/handle/10665/204871).
  164. Schneider AL, Pankow JS, Heiss G, Selvin E. Validity and reliability of self-reported diabetes in the Atherosclerosis Risk in Communities Study. Am J Epidemiol. 2012;176(8):738–43 (https://doi.org/10.1093/aje/kws156).
  165. Yuan X, Liu T, Wu L, Zou ZY, Li C. Validity of self-reported diabetes among middle-aged and older Chinese adults: the China Health and Retirement Longitudinal Study. BMJ Open. 2015;5(4):e006633 (https://doi.org/10.1136/bmjopen-2014-006633).
  166. Jorgensen JMA, Hedt KH, Omar OM, Davies JI. Hypertension and diabetes in Zanzibar – prevalence and access to care. BMC Public Health. 2020;20(1):1352 (https://doi.org/10.1186/s12889-020-09432-8).
  167. Pastakia SD, Ali SM, Kamano JH, Akwanalo CO, Ndege SK, Buckwalter VL et al. Screening for diabetes and hypertension in a rural low income setting in western Kenya utilizing home-based and community-based strategies. Global Health. 2013;9:21 (https://doi.org/10.1186/1744-8603-9-21).
  168. Musicha C, Crampin AC, Kayuni N, Koole O, Amberbir A, Mwagomba B et al. Accessing clinical services and retention in care following screening for hypertension and diabetes among Malawian adults: an urban/rural comparison. J Hypertens. 2016;34(11):217–9 (https://doi.org/10.1097/hjh.0000000000001070). Licence: EMS75799
  169. Lindström J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care. 2003;26(3):725–31 (https://doi.org/10.2337/diacare.26.3.725).
  170. Al-Lawati JA, Tuomilehto J. Diabetes risk score in Oman: a tool to identify prevalent type 2 diabetes among Arabs of the Middle East. Diabetes Res Clin Pract. 2007;77(3):438–44 (https://doi.org/10.1016/j.diabres.2007.01.013).
  171. Ramachandran A, Snehalatha C, Vijay V, Wareham NJ, Colagiuri S. Derivation and validation of diabetes risk score for urban Asian Indians. Diabetes Res Clin Pract. 2005;70(1):63–70 (https://doi.org/10.1016/j.diabres.2005.02.016).
  172. Nguyen DT, Graviss EA. Development and validation of a risk score to predict mortality during TB treatment in patients with TB-diabetes comorbidity. BMC Infect Dis. 2019;19(1):10 (https://doi.org/10.1186/s12879-018-3632-5).
  173. Krishnappa D, Sharma SK, Singh AD, Sinha S, Ammini AC, Soneja M. Impact of tuberculosis on glycaemic status: a neglected association. Indian J Med Res. 2019;149(3):384–8 (https://doi.org/10.4103/ijmr.IJMR_1927_17).
  174. Dungan KM, Braithwaite SS, Preiser JC. Stress hyperglycaemia. Lancet. 2009;373(9677):1798–807 (https://doi.org/10.1016/s0140-6736(09)60553-5). Licence: NIHMS309353.
  175. Magee MJ, Salindri AD, Kyaw NTT, Auld SC, Haw JS, Umpierrez GE. Stress hyperglycemia in patients with tuberculosis disease: epidemiology and clinical implications. Curr Diab Rep. 2018;18(9):71 (https://doi.org/10.1007/s11892-018-1036-y). Licence: Nihms999741.
  176. Ruslami R, Koesoemadinata RC, Soetedjo NNM, Imaculata S, Gunawan Y, Permana H et al. The effect of a structured clinical algorithm on glycemic control in patients with combined tuberculosis and diabetes in Indonesia: a randomized trial. Diabetes Res Clin Pract. 2021;173:108701 (https://doi.org/10.1016/j.diabres.2021.108701).
  177. Boillat-Blanco N, Tumbo AN, Perreau M, Amelio P, Ramaiya KL, Mganga M et al. Hyperglycaemia is inversely correlated with live M. bovis BCG-specific CD4(+) T cell responses in Tanzanian adults with latent or active tuberculosis. Immun Inflamm Dis. 2018;6(2):345–53 (https://doi.org/10.1002/iid3.222).
  178. Tabarsi P, Baghaei P, Marjani M, Vollmer WM, Masjedi MR, Harries AD. Changes in glycosylated haemoglobin and treatment outcomes in patients with tuberculosis in Iran: a cohort study. J Diabetes Metab Disord. 2014;13(1):123 (https://doi.org/10.1186/s40200-014-0123-0).
  179. Green A, Hede SM, Patterson CC, Wild SH, Imperatore G, Roglic G et al. Type 1 diabetes in 2017: global estimates of incident and prevalent cases in children and adults. Diabetologia. 2021;64(12):2741–50 (https://doi.org/10.1007/s00125-021-05571-8).
  180. Guidelines on second- and third-line medicines and type of insulin for the control of blood glucose levels in non-pregnant adults with diabetes mellitus. Geneva: World Health Organization; 2018 (https://iris.who.int/handle/10665/272433). Licence: CC BY-NC-SA 3.0 IGO.
  181. Hemmingsen B, Metzendorf MI, Richter B. (Ultra-)long-acting insulin analogues for people with type 1 diabetes mellitus. Cochrane Database Syst Rev. 2021;3(3):CD013498 (https://doi.org/10.1002/14651858.CD013498.pub2).
  182. Siebenhofer A, Plank J, Berghold A, Jeitler K, Horvath K, Narath M et al. Short acting insulin analogues versus regular human insulin in patients with diabetes mellitus. Cochrane Database Syst Rev. 2006(2):CD003287 (https://doi.org/10.1002/14651858.CD003287.pub4).
  183. Implementing telemedicine services during COVID-19: guiding principles and considerations for a stepwise approach. Manila: WHO Regional Office for the Western Pacific; 2020 (WPR/DSE/2020/032; https://iris.who.int/handle/10665/336862). Licence: CC BY-NC-SA 3.0 IGO.
Convert to pdf
Off

Navegación del libro