References (Chapter 1)

  1. Guidelines for treatment of drug-susceptible tuberculosis and patient care, 2017 update (WHO/HTM/TB/2017.05). Geneva: World Health Organization; 2017 (https://apps.who.int/iris/bitstream/handle/10665/255052/9789241550000-eng.pdf).
  2. Treatment of tuberculosis, guidelines for national programmes, fourth edition (WHO/HTM/TB/2009.420). Geneva: World Health Organization; 2010 (https://www.who.int/publications-detail-redirect/9789241547833).
  3. Fox W, Ellard GA, Mitchison DA. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946–1986, with relevant subsequent publications. Int J Tuberc Lung Dis. 1999;3:S231–79 (https://www.ncbi.nlm.nih.gov/pubmed/10529902).
  4. WHO consolidated guidelines on tuberculosis. Module 5: Management of tuberculosis in children and adolescents. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240046764). Licence: CC BY-NC-SA 3.0 IGO.
  5. The End TB Strategy. Geneva: World Health Organization; 2015 (https://www.who.int/teams/global-tuberculosis-programme/the-end-tb-strategy).
  6. WHO consolidated guidelines on tuberculosis. Module 4: Treatment – tuberculosis care and support. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240047716). Licence: CC BY-NC-SA 3.0 IGO.
  7. Menzies D, Benedetti A, Paydar A, Martin I, Royce S, Pai M et al. Effect of duration and intermittency of rifampin on tuberculosis treatment outcomes: a systematic review and meta-analysis. PLoS Med. 2009;6:e1000146 (https://doi.org/10.1371/journal.pmed.1000146).
  8. Updated recommendations on treatment of adolescents and children with chronic HCV infection, and HCV simplified service delivery and diagnostics. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240052734). Licence: CC BY-NC-SA 3.0 IGO.
  9. Menzies D, Benedetti A, Paydar A, Royce S, Madhukar P, Burman W et al. Standardized treatment of active tuberculosis in patients with previous treatment and/or with mono-resistance to isoniazid: a systematic review and meta-analysis. PLoS Med. 2009;6:e1000150 (https://doi.org/10.1371/journal.pmed.1000150).
  10. Jindani A, Nunn AJ, Enarson DA. Two 8-month regimens of chemotherapy for treatment of newly diagnosed pulmonary tuberculosis: international multicentre randomised trial. Lancet. 2004;364:1244–51 (https://doi.org/10.1016/S0140-6736(04)17141-9).
  11. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach, 2nd edition. Geneva: World Health Organization; 2016 (https://apps.who.int/iris/bitstream/handle/10665/208825/9789241549684_eng.pdf).
  12. Gillespie SH, Crook AM, McHugh TD, Mendel CM, Meredith SK, Murray SR et al. Four-month moxifloxacinbased regimens for drug-sensitive tuberculosis. N Engl J Med. 2014;371:1577–87 (https://doi.org/10.1056/NEJMoa1407426).
  13. Merle CS, Fielding K, Sow OB, Gninafon M, Lo MB, Mthiyane T et al. A four-month gatifloxacin-containing regimen for treating tuberculosis. N Engl J Med. 2014;371:1588–98 (https://doi.org/10.1056/NEJMoa1315817).
  14. Blanc FX, Sok T, Laureillard D, Borand L, Rekacewicz C, Nerrienet E et al. Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N Engl J Med. 2011;365:1471–81 (https://doi.org/10.1056/NEJMoa1013911).
  15. Johnson JL, Hadad DJ, Dietze R, Maciel EL, Sewali B, Gitta P et al. Shortening treatment in adults with noncavitary tuberculosis and 2-month culture conversion. Am J Respir Crit Care Med. 2009;180:558–63 (https://doi.org/10.1164/rccm.200904-0536OC).
  16. Lienhardt C, Cook SV, Burgos M, Yorke-Edwards V, Rigouts L, Anyo G et al. Efficacy and safety of a 4-drug fixed-dose combination regimen compared with separate drugs for treatment of pulmonary tuberculosis: the Study C randomized controlled trial. JAMA. 2011;305:1415–23 (https://doi.org/10.1001/jama.2011.436).
  17. Swaminathan S, Narendran G, Venkatesan P, Iliayas S, Santhanakrishnan R, Menon PA et al. Efficacy of a 6-month versus 9-month intermittent treatment regimen in HIV-infected patients with tuberculosis: a randomized clinical trial. Am J Respir Crit Care Med. 2010;181:743–51 (https://doi.org/10.1164/rccm.200903-0439OC).
  18. Guidance for national tuberculosis programmes on the management of tuberculosis in children (WHO/HTM/TB/2014.03). Geneva: World Health Organization; 2014 (https://apps.who.int/iris/bitstream/handle/10665/112360/9789241548748_eng.pdf).
  19. Albanna AS, Smith BM, Cowan D, Menzies D. Fixed-dose combination antituberculosis therapy: a systematic review and meta-analysis. Eur Respir J. 2013;42:721–32 (https://doi.org/10.1183/09031936.00180612).
  20. Gallardo CR, Rigau Comas D, Valderrama Rodriguez A, Roque i Figuls M, Parker LA, Cayla J et al. Fixeddose combinations of drugs versus single-drug formulations for treating pulmonary tuberculosis. Cochrane Database Syst Rev. 2016;2016:CD009913 (https://doi.org/10.1002/14651858.CD009913.pub2).
  21. Blomberg B, Spinaci S, Fourie B, Laing R. The rationale for recommending fixed-dose combination tablets for treatment of tuberculosis. Bull World Health Organ. 2001;79:61–8 (https://www.ncbi.nlm.nih.gov/pubmed/11217670).
  22. Milan-Segovia RC, Dominguez-Ramirez AM, Jung-Cook H, Magana-Aquino M, Romero-Mendez MC, Medellin-Garibay SE et al. Relative bioavailability of rifampicin in a three-drug fixed-dose combination formulation. Int J Tuberc Lung Dis. 2010;14:1454–60 (https://pubmed.ncbi.nlm.nih.gov/20937187/).
  23. Hao LH, Guo SC, Liu CC, Zhu H, Wang B, Fu L et al. Comparative bioavailability of rifampicin and isoniazid in fixed-dose combinations and single-drug formulations. Int J Tuberc Lung Dis. 2014;18:1505–12 (https://doi.org/10.5588/ijtld.13.0647).
  24. Aung KJ, Declercq E, Ali MA, Naha S, Datta Roy SC, Taleb MA et al. Extension of the intensive phase reduces relapse but not failure in a regimen with rifampicin throughout. Int J Tuberc Lung Dis. 2012;16:455–61 (https://doi.org/10.5588/ijtld.11.0216).
  25. Global tuberculosis report 2020. Geneva: World Health Organization; 2020 (https://www.who.int/publications-detail-redirect/9789240013131). Licence: CC BY-NC-SA 3.0 IGO.
  26. Jindani A, Harrison TS, Nunn AJ, Phillips PP, Churchyard GJ, Charalambous S et al. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N Engl J Med. 2014;371:1599–608 (https://doi.org/10.1056/NEJMoa1314210).
  27. Dorman SE, Nahid P, Kurbatova EV, Phillips PPJ, Bryant K, Dooley KE et al. Four-month rifapentine regimens with or without moxifloxacin for tuberculosis. N Engl J Med. 2021;384:1705–18 (https://doi.org/10.1056/NEJMoa2033400).
  28. Grace AG, Mittal A, Jain S, Tripathy JP, Satyanarayana S, Tharyan P et al. Shortened treatment regimens versus the standard regimen for drug-sensitive pulmonary tuberculosis. Cochrane Database Syst Rev. 2019;12:CD012918 (https://doi.org/10.1002/14651858.CD012918.pub2).
  29. Ismail NA, Mvusi L, Nanoo A, Dreyer A, Omar SV, Babatunde S et al. Prevalence of drug-resistant tuberculosis and imputed burden in South Africa: a national and sub-national cross-sectional survey. Lancet Infect Dis. 2018;18:779–87 (https://doi.org/10.1016/S1473-3099(18)30222-6).
  30. Kayomo MK, Mbula VN, Aloni M, Andre E, Rigouts L, Boutachkourt F et al. Targeted next-generation sequencing of sputum for diagnosis of drug-resistant TB: results of a national survey in Democratic Republic of the Congo. Sci Rep. 2020;10:10786 (https://doi.org/10.1038/s41598-020-67479-4).
  31. Lim DR, Dean AS, Taguinod-Santiago MR, Borbe-Reyes A, Cabibbe AM, Zignol M et al. Low prevalence of fluoroquinolone resistance among patients with tuberculosis in the Philippines: results of a national survey. Eur Respir J. 2018;51 (https://doi.org/10.1183/13993003.02571-2017).
  32. Mesfin AB, Araia ZZ, Beyene HN, Mebrahtu AH, Suud NN, Berhane YM et al. First molecular-based anti-TB drug resistance survey in Eritrea. Int J Tuberc Lung Dis. 2021;25:43–51 (https://doi.org/10.5588/ijtld.20.0558).
  33. Zignol M, Dean AS, Alikhanova N, Andres S, Cabibbe AM, Cirillo DM et al. Population-based resistance of Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones: results from a multicountry surveillance project. Lancet Infect Dis. 2016;16:1185–92 (https://doi.org/10.1016/S1473-3099(16)30190-6).
  34. Zvada SP, Van Der Walt JS, Smith PJ, Fourie PB, Roscigno G, Mitchison D et al. Effects of four different meal types on the population pharmacokinetics of single-dose rifapentine in healthy male volunteers. Antimicrob Agents Chemother. 2010;54:3390–4 (https://doi.org/10.1128/AAC.00345-10).
  35. Turkova A, Wills GH, Wobudeya E, Chabala C, Palmer M, Kinikar A et al. Shorter treatment for nonsevere tuberculosis in African and Indian children. N Engl J Med. 2022;386:911–22 (https://doi.org/10.1056/NEJMoa2104535).
  36. Chabala C, Turkova A, Thomason MJ, Wobudeya E, Hissar S, Mave V et al. Shorter treatment for minimal tuberculosis (TB) in children (SHINE): a study protocol for a randomised controlled trial. Trials. 2018;19:237 (https://doi.org/10.1186/s13063-018-2608-5).
  37. WHO case definitions of HIV for surveillance and revised clinical staging and immunological classification of HIV-related disease in adults and children. Geneva: World Health Organization; 2007 (https://iris.who.int/handle/10665/43699).
  38. Guideline: updates on the management of severe acute malnutrition in infants and children. Geneva: World Health Organization; 2013 (https://www.who.int/publications-detail-redirect/9789241506328).
  39. WHO consolidated guidelines on tuberculosis. Module 4: Treatment – drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2020 (https://www.who.int/publications/i/item/9789240007048). Licence: CC BY-NC-SA 3.0 IGO.
  40. WHO consolidated guidelines on tuberculosis. Module 1: Prevention – tuberculosis preventive treatment. Geneva: World Health Organization; 2020 (https://www.who.int/publications-detail-redirect/9789240001503). Licence: CC BY-NC-SA 3.0 IGO.
  41. Khan FA, Minion J, Pai M, Royce S, Burman W, Harries AD et al. Treatment of active tuberculosis in HIVcoinfected patients: a systematic review and meta-analysis. Clin Infect Dis. 2010;50:1288–99 (https://doi.org/10.1086/651686).
  42. Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. Geneva: World Health Organization; 2021 (https://www.who.int/publications-detail-redirect/9789240031593). Licence: CC BY-NC-SA 3.0 IGO.
  43. Antiretroviral therapy for HIV infection in adults and adolescents. Recommendations for a public health approach: 2010 revision. Geneva: World Health Organization; 2010 (https://apps.who.int/iris/bitstream/handle/10665/44379/9789241599764_eng.pdf).
  44. Guidelines for managing advanced HIV disease and rapid initiation of antiretroviral therapy. Geneva: World Health Organization; 2017 (https://apps.who.int/iris/handle/10665/255884). Licence: CC BY-NC-SA 3.0 IGO.
  45. Chotmongkol V, Jitpimolmard S, Thavornpitak Y. Corticosteroid in tuberculous meningitis. J Med Assoc Thai. 1996;79:83–90 (https://pubmed.ncbi.nlm.nih.gov/8868018/).
  46. Kumarvelu S, Prasad K, Khosla A, Behari M, Ahuja GK. Randomized controlled trial of dexamethasone in tuberculous meningitis. Tuber Lung Dis. 1994;75:203–7 (https://doi.org/10.1016/0962-8479(94)90009-4).
  47. Malhotra HS, Garg RK, Singh MK, Agarwal A, Verma R. Corticosteroids (dexamethasone versus intravenous methylprednisolone) in patients with tuberculous meningitis. Ann Trop Med Parasitol. 2009;103:625–34 (https://doi.org/10.1179/000349809X12502035776315).
  48. Schoeman JF, Van Zyl LE, Laubscher JA, Donald PR. Effect of corticosteroids on intracranial pressure, computed tomographic findings, and clinical outcome in young children with tuberculous meningitis. Pediatrics. 1997;99:226–31 (https://doi.org/10.1542/peds.99.2.226).
  49. Thwaites GE, Nguyen DB, Nguyen HD, Hoang TQ, Do TT, Nguyen TC et al. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med. 2004;351:1741–51 (https://doi.org/10.1056/NEJMoa040573).
  50. Critchley JA, Young F, Orton L, Garner P. Corticosteroids for prevention of mortality in people with tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13:223–37 (https://doi.org/10.1016/S1473-3099(12)70321-3).
  51. Hakim JG, Ternouth I, Mushangi E, Siziya S, Robertson V, Malin A. Double blind randomised placebo controlled trial of adjunctive prednisolone in the treatment of effusive tuberculous pericarditis in HIV seropositive patients. Heart. 2000;84:183–8 (https://doi.org/10.1136/heart.84.2.183).
  52. Mayosi BM, Ntsekhe M, Bosch J, Pandie S, Jung H, Gumedze F et al. Prednisolone and Mycobacterium indicus pranii in tuberculous pericarditis. N Engl J Med. 2014;371:1121–30 (https://doi.org/10.1056/NEJMoa1407380).
  53. Mayosi BM, Ntsekhe M, Volmink JA, Commerford PJ. Interventions for treating tuberculous pericarditis. Cochrane Database Syst Rev. 2002:CD000526 (https://doi.org/10.1002/14651858.CD000526).
  54. Reuter H, Burgess LJ, Louw VJ, Doubell AF. Experience with adjunctive corticosteroids in managing tuberculous pericarditis. Cardiovasc J S Afr. 2006;17:233–8 (https://pubmed.ncbi.nlm.nih.gov/17117227/).
  55. Schrire V. Experience with pericarditis at Groote Schuur Hospital, Cape Town: an analysis of one hundred and sixty cases studied over a six-year period. S Afr Med J. 1959;33:810–7 (https://pubmed.ncbi.nlm.nih.gov/14443596/).
  56. Strang JI, Kakaza HH, Gibson DG, Girling DJ, Nunn AJ, Fox W. Controlled trial of prednisolone as adjuvant in treatment of tuberculous constrictive pericarditis in Transkei. Lancet. 1987;2:1418–22 (https://doi.org/10.1016/s0140-6736(87)91127-5).

Navegación del libro