WHO consolidated guidelines on tuberculosis. Module 4: Treatment – tuberculosis care and support. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240047716). Licence: CC BY-NC-SA 3.0 IGO.
Key updates to the treatment of drug-resistant tuberculosis: rapid communication, June 2024. Geneva: World Health Organization; 2024 (https://iris.who.int/handle/10665/378472). Licence: CC BY-NC-SA 3.0 IGO.
WHO operational handbook on tuberculosis. Module 4: Treatment – drug-resistant tuberculosis treatment, 2022 update. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240065116). Licence: CC BY-NC-SA 3.0 IGO.
Guidelines for the programmatic management of drug-resistant tuberculosis (WHO/HTM/TB/2006.361). Geneva: World Health Organization; 2006 (https://apps.who.int/iris/handle/10665/246249).
Guidelines for the programmatic management of drug-resistant tuberculosis – emergency update (WHO/HTM/TB/2008.402). Geneva: World Health Organization; 2008 (https://apps.who.int/iris/handle/10665/43965).
The use of bedaquiline in the treatment of multidrug-resistant tuberculosis. Interim policy guidance (WHO/HTM/TB/2013.6). Geneva: World Health Organization; 2013 (https://apps.who.int/iris/handle/10665/84879).
The use of delamanid in the treatment of multidrug-resistant tuberculosis. Interim policy guidance (WHO/HTM/TB2014.23). Geneva: World Health Organization; 2014 (https://iris.who.int/handle/10665/137334).
Van Deun A, Maug AKJ, Salim MAH, Das PK, Sarker MR, Daru P et al. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med. 2010;182:684–92 (https://doi.org/10.1164/rccm.201001-0077OC).
Kuaban C, Noeske J, Rieder HL, Aït-Khaled N, Abena Foe JL, Trébucq A. High effectiveness of a 12-month regimen for MDR-TB patients in Cameroon. Int J Tuberc Lung Dis. 2015;19:517–24 (https://doi.org/10.5588/ijtld.14.0535).
Trébucq A, Schwoebel V, Kashongwe Z, Bakayoko A, Kuaban C, Noeske J et al. Treatment outcome with a short multidrug-resistant tuberculosis regimen in nine African countries. Int J Tuberc Lung Dis. 2018;22:17– 25 (https://doi.org/10.5588/ijtld.17.0498).
Piubello A, Harouna SH, Souleymane MB, Boukary I, Morou S, Daouda M et al. High cure rate with standardised short-course multidrug-resistant tuberculosis treatment in Niger: no relapses. Int J Tuberc Lung Dis. 2014;18:1188–94 (https://doi.org/10.5588/ijtld.13.0075).
Nunn AJ, Phillips PP, Meredith SK, Chiang C-Y, Conradie F, Dalai D et al. A trial of a shorter regimen for rifampin-resistant tuberculosis. N Engl J Med. 2019;380:1201–13 (https://doi.org/10.1056/NEJMoa1811867).
Position statement on the continued use of the shorter MDR-TB regimen following an expedited review of the STREAM Stage 1 preliminary results (WHO/CDS/TB/2018.2). Geneva: World Health Organization; 2018 (https://www.who.int/publications/m/item/WHO-CDS-TB-2018.2).
Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook AM et al. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med. 2020;382:893–902 (https://doi.org/10.1056/NEJMoa1901814).
Esmail A, Oelofse S, Lombard C, Perumal R, Mbuthini L, Goolam Mahomed A et al. An all-oral 6-month regimen for multidrug-resistant tuberculosis: a multicenter, randomized controlled clinical trial (the NExT Study). Am J Respir Crit Care Med. 2022;205:1214–27 (https://doi.org/10.1164/rccm.202107-1779OC).
Conradie F, Bagdasaryan TR, Borisov S, Howell P, Mikiashvili L, Ngubane N et al. Bedaquiline–pretomanid–linezolid regimens for drug-resistant tuberculosis. N Engl J Med. 2022;387:810–23 (https://doi.org/10.1056/NEJMoa2119430).
WHO consolidated guidelines on tuberculosis. Module 4: Treatment – drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2020 (https://www.who.int/publications/i/item/9789240007048). Licence: CC BY-NC-SA 3.0 IGO.
WHO consolidated guidelines on tuberculosis. Module 5: Management of tuberculosis in children and adolescents. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240046764). Licence: CC BY-NC-SA 3.0 IGO.
Salinger DH, Nedelman JR, Mendel C, Spigelman M, Hermann DJ. Daily dosing for bedaquiline in patients with tuberculosis. Antimicrob Agents Chemother. 2019;63 (https://doi.org/10.1128/AAC.00463-19).
Protocol title: a Phase 3 partially-blinded, randomized trial assessing the safety and efficacy of various doses and treatment durations of linezolid plus bedaquiline and pretomanid in participants with pulmonary infection of either extensively drug-resistant tuberculosis (XDR-TB), pre-XDR-TB or treatment intolerant or non-responsive multi-drug resistant tuberculosis (MDR-TB). 2020.
Nunn AJ, Phillips PP, Mitchison DA. Timing of relapse in short-course chemotherapy trials for tuberculosis. Int J Tuberc Lung Dis. 2010;14:241–2 (https://www.ncbi.nlm.nih.gov/pubmed/20074418).
Gomez GB, Siapka M, Conradie F, Ndjeka N, Garfin AMC, Lomtadze N et al. Cost-effectiveness of bedaquiline, pretomanid and linezolid for treatment of extensively drug-resistant tuberculosis in South Africa, Georgia and the Philippines. BMJ Open. 2021;11 (https://doi.org/10.1136/bmjopen-2021-051521).
Mulder C, Rupert S, Setiawan E, Mambetova E, Edo P, Sugiharto J et al. Budgetary impact of using BPaL for treating extensively drug-resistant tuberculosis. BMJ Global Health. 2022;7 (https://doi.org/10.1136/bmjgh-2021-007182).
van de Berg SEJ, Pelzer PT, van der Land AJ, Abdrakhmanova E, Ozi AM, Arias M et al. Acceptability, feasibility, and likelihood of stakeholders implementing the novel BPaL regimen to treat extensively drugresistant tuberculosis patients. BMC Public Health. 2021;21 (https://doi.org/10.1186/s12889-021-11427-y).
Stringer B, Lowton K, James N, Nyang’wa BT. Capturing patient-reported and quality of life outcomes with use of shorter regimens for drug-resistant tuberculosis: mixed-methods substudy protocol, TB PRACTECALPRO. BMJ Open. 2021;11 (https://doi.org/10.1136/bmjopen-2020-043954).
Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children (WHO/HTM/TB/2013.16). Geneva: World Health Organization; 2013 (https://apps.who.int/iris/bitstream/handle/10665/112472/9789241506335_eng.pdf).
WHO consolidated guidelines on tuberculosis. Module 3: Diagnosis – rapid diagnostics for tuberculosis detection, third edition. Geneva: World Health Organization; 2024 (https://www.who.int/publications/i/item/9789240089488). Licence: CC BY-NC-SA 3.0 IGO.
Technical report on critical concentrations for TB drug susceptibility testing of medicines used in the treatment of drug-resistant TB (WHO/CDS/TB/2018.5). Geneva: World Health Organization; 2018 (https://www.who.int/publications/i/item/WHO-CDS-TB-2018.5).
Park HY, Cheon HB, Choi SH, Kwon JW. Health-related quality of life based on EQ-5D utility score in patients with tuberculosis: a systematic review. Front Pharmacol. 2021;12:659675 (https://doi.org/10.3389/fphar.2021.659675).
Morgano GP, Mbuagbaw L, Santesso N, Xie F, Brozek JL, Siebert U et al. Defining decision thresholds for judgments on health benefits and harms using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) evidence to decision (EtD) frameworks: a protocol for a randomised methodological study (GRADE-THRESHOLD). BMJ Open. 2022;12:e053246 (https://doi.org/10.1136/bmjopen-2021-053246).
Alonso-Coello P, Oxman AD, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M et al. GRADE evidence to decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ. 2016;353:i2089 (https://doi.org/10.1136/bmj.i2089).
Schunemann HJ, Neumann I, Hultcrantz M, Brignardello-Petersen R, Zeng L, Murad MH et al. GRADE guidance 35: update on rating imprecision for assessing contextualized certainty of evidence and making decisions. J Clin Epidemiol. 2022;150:225–42 (https://doi.org/10.1016/j.jclinepi.2022.07.015).
Ryckman TS, Schumacher SG, Lienhardt C, Sweeney S, Dowdy DW, Mirzayev F et al. Economic implications of novel regimens for tuberculosis treatment in three high-burden countries: a modelling analysis. Lancet Glob Health. 2024;12:e995–1004 (https://doi.org/10.1016/S2214-109X(24)00088-3).
Liang R, Maartens G, Meintjes G, Wasserman S, Gandhi NR, Warren R et al. Bedaquiline and clofazimine resistance following an interruption in treatment for rifampicin-resistant TB [Conference abstract]. Presented at the Union World Conference on Lung Health 2024, Bali, Indonesia. 2024.
Ndjeka N, Campbell JR, Meintjes G, Maartens G, Schaaf HS, Hughes J et al. Treatment outcomes 24 months after initiating short, all-oral bedaquiline-containing or injectable-containing rifampicin-resistant tuberculosis treatment regimens in South Africa: a retrospective cohort study. Lancet Infect Dis. 2022;22:1042–51 (https://doi.org/10.1016/S1473-3099(21)00811-2).
Brill MJE, Svensson EM, Pandie M, Maartens G, Karlsson MO. Confirming model-predicted pharmacokinetic interactions between bedaquiline and lopinavir/ritonavir or nevirapine in patients with HIV and drug-resistant tuberculosis. Int J Antimicrob Agents. 2017;49:212–7 (https://doi.org/10.1016/j.ijantimicag.2016.10.020).
Svensson EM, Dooley KE, Karlsson MO. Impact of lopinavir-ritonavir or nevirapine on bedaquiline exposures and potential implications for patients with tuberculosis-HIV coinfection. Antimicrob Agents Chemother. 2014;58:6406–12 (https://doi.org/10.1128/AAC.03246-14).
Svensson EM, Aweeka F, Park J-G, Marzan F, Dooley KE, Karlsson MO. Model-based estimates of the effects of efavirenz on bedaquiline pharmacokinetics and suggested dose adjustments for patients coinfected with HIV and tuberculosis. Antimicrob Agents Chemother. 2013;57:2780–7 (https://doi.org/10.1128/AAC.00191-13).
Cerrone M, Bracchi M, Wasserman S, Pozniak A, Meintjes G, Cohen K et al. Safety implications of combined antiretroviral and anti-tuberculosis drugs. Expert Opin Drug Saf. 2020;19:23–41 (https://doi.org/10.1080/14740338.2020.1694901).
Acquah R, Mohr-Holland E, Daniels J, Furin J, Loveday M, Mudaly V et al. Outcomes of children born to pregnant women with drug-resistant tuberculosis treated with novel drugs in Khayelitsha, South Africa: a report of five patients. Pediatr Infect Dis J. 2021;40:e191–e2 (https://doi.org/10.1097/inf.0000000000003069).
Loveday M, Hughes J, Sunkari B, Master I, Hlangu S, Reddy T et al. Maternal and infant outcomes among pregnant women treated for multidrug/rifampicin-resistant tuberculosis in South Africa. Clin Infect Dis. 2020;72:1158–68 (https://doi.org/10.1093/cid/ciaa189).
Borisov S, Danila E, Maryandyshev A, Dalcolmo M, Miliauskas S, Kuksa L et al. Surveillance of adverse events in the treatment of drug-resistant tuberculosis: first global report. Eur Respir J. 2019;54:1901522 (https://doi.org/10.1183/13993003.01522-2019).
Guglielmetti L, Khan U, Velásquez GE, Gouillou M, Abubakirov A, Baudin E et al. Oral Regimens for RifampinResistant, Fluoroquinolone-Susceptible Tuberculosis. New England Journal of Medicine. 2025;392:468-82 (doi:10.1056/NEJMoa2400327).
Gupta A, Mathad JS, Abdel-Rahman SM, Albano JD, Botgros R, Brown V et al. Toward earlier inclusion of pregnant and postpartum women in tuberculosis drug trials: consensus statements from an international expert panel. Clin Infect Dis. 2016;62:761–9 (https://doi.org/10.1093/cid/civ991).
Alene KA, Murray MB, van de Water BJ, Becerra MC, Atalell KA, Nicol MP et al. Treatment outcomes among pregnant patients with multidrug-resistant tuberculosis: a systematic review and meta-analysis. JAMA Netw Open. 2022;5:e2216527 (https://doi.org/10.1001/jamanetworkopen.2022.16527).
WHO consolidated operational handbook on tuberculosis. Module 4: Treatment and care. Geneva: World Health Organization; 2025. Licence: CC BY-NC-SA 3.0 IGO.
Ahuja SD, Ashkin D, Avendano M, Banerjee R, Bauer M, Bayona JN et al. Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9153 patients. PLoS Med. 2012;9:e1001300 (https://doi.org/10.1371/journal.pmed.1001300).
Harausz EP, Garcia-Prats AJ, Law S, Schaaf HS, Kredo T, Seddon JA et al. Treatment and outcomes in children with multidrug-resistant tuberculosis: a systematic review and individual patient data meta-analysis. PLoS Med. 2018;15:e1002591 (https://doi.org/10.1371/journal.pmed.1002591).
Ahmad N, Ahuja SD, Akkerman OW, Alffenaar J-WC, Anderson LF, Baghaei P et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data metaanalysis. Lancet. 2018;392:821–34 (https://doi.org/10.1016/S0140-6736(18)31644-1).
Seddon JA, Hesseling AC, Godfrey-Faussett P, Schaaf HS. High treatment success in children treated for multidrug-resistant tuberculosis: an observational cohort study. Thorax. 2014;69:458–64 (https://doi.org/10.1136/thoraxjnl-2013-203900).
Safety and efficacy trial of delamanid for 6 months in patients with multidrug resistant tuberculosis. Otsuka Pharmaceutical Development & Commercialization, Inc.; 2016 (https://clinicaltrials.gov/ct2/show/NCT01424670).
von Groote-Bidlingmaier F, Patientia R, Sanchez E, Balanag V, Ticona E, Segura P et al. Efficacy and safety of delamanid in combination with an optimised background regimen for treatment of multidrug-resistant tuberculosis: a multicentre, randomised, double-blind, placebo-controlled, parallel group Phase 3 trial. Lancet Respir Med. 2019;7:249–59 (https://doi.org/10.1016/S2213-2600(18)30426-0).
Khan U, Huerga H, Khan AJ, Mitnick CD, Hewison C, Varaine F et al. The endTB observational study protocol: treatment of MDR-TB with bedaquiline or delamanid containing regimens. BMC Infect Dis. 2019;19 (https://doi.org/10.1186/s12879-019-4378-4).
Svensson EM, du Bois J, Kitshoff R, de Jager VR, Wiesner L, Norman J et al. Relative bioavailability of bedaquiline tablets suspended in water: implications for dosing in children. Br J Clin Pharmacol. 2018;84:2384–92 (https://doi.org/10.1111/bcp.13696).
Lan Z, Ahmad N, Baghaei P, Barkane L, Benedetti A, Brode SK et al. Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med. 2020;8:383–94 (https://doi.org/10.1016/S2213-2600(20)30047-3).
Tang S, Yao L, Hao X, Zhang X, Liu G, Liu X et al. Efficacy, safety and tolerability of linezolid for the treatment of XDR-TB: a study in China. Eur Respir J. 2015;45:161–70 (https://doi.org/10.1183/09031936.00035114).
Dooley KE, Miyahara S, von Groote-Bidlingmaier F, Sun X, Hafner R, Rosenkranz SL et al. Early bactericidal activity of different isoniazid doses for drug resistant TB (INHindsight): a randomized open-label clinical trial. Am J Respir Crit Care Med. 2020;201:1416–24 (https://doi.org/10.1164/rccm.201910-1960OC).
Thwaites GE, Bhavnani SM, Chau TTH, Hammel JP, Torok ME, Van Wart SA et al. Randomized pharmacokinetic and pharmacodynamic comparison of fluoroquinolones for tuberculous meningitis. Antimicrob Agents Chemother. 2011;55:3244–53 (https://doi.org/10.1128/AAC.00064-11).
Sun F, Ruan Q, Wang J, Chen S, Jin J, Shao L et al. Linezolid manifests a rapid and dramatic therapeutic effect for patients with life-threatening tuberculous meningitis. Antimicrob Agents Chemother. 2014;58:6297–301 (https://doi.org/10.1128/AAC.02784-14).
Akkerman OW, Odish OF, Bolhuis MS, de Lange WC, Kremer HP, Luijckx G-JR et al. Pharmacokinetics of bedaquiline in cerebrospinal fluid and serum in multidrug-resistant tuberculous meningitis. Clin Infect Dis. 2016;62:523–4 (https://doi.org/10.1093/cid/civ921).
Tucker EW, Pieterse L, Zimmerman MD, Udwadia ZF, Peloquin CA, Gler MT et al. Delamanid central nervous system pharmacokinetics in tuberculous meningitis in rabbits and humans. Antimicrob Agents Chemother. 2019;63:e00913–19 (https://doi.org/10.1128/AAC.00913-19).
Linh NN, Viney K, Gegia M, Falzon D, Glaziou P, Floyd K et al. World Health Organization treatment outcome definitions for tuberculosis: 2021 update. Eur Respir J. 2021;58 (https://doi.org/10.1183/13993003.00804-2021).
Mao Y, Dai D, Jin H, Wang Y. The risk factors of linezolid-induced lactic acidosis: a case report and review. Med. 2018;97:e12114 (https://doi.org/10.1097/MD.0000000000012114).
Hornik CP, Herring AH, Benjamin DK, Capparelli EV, Kearns GL, van den Anker J et al. Adverse events associated with meropenem versus imipenem/cilastatin therapy in a large retrospective cohort of hospitalized infants. Pediatr Infect Dis J. 2013;32:748–53 (https://doi.org/10.1097/INF.0b013e31828be70b).
Electronic recording and reporting for tuberculosis care and control (WHO/HTM/TB/2011.22). Geneva: World Health Organization; 2012 (https://apps.who.int/iris/handle/10665/44840).
Escalante P, Graviss EA, Griffith DE, Musser JM, Awe RJ. Treatment of isoniazid-resistant tuberculosis in southeastern Texas. Chest. 2001;119:1730–6 (https://doi.org/10.1378/chest.119.6.1730).
Nolan C, Goldberg S. Treatment of isoniazid-resistant tuberculosis with isoniazid, rifampin, ethambutol, and pyrazinamide for 6 months. Int J Tuberc Lung Dis. 2002;6:952–8 (https://pubmed.ncbi.nlm.nih.gov/12475140/).
Kim YH, Suh GY, Chung MP, Kim H, Kwon OJ, Lim SY et al. Treatment of isoniazid-resistant pulmonary tuberculosis. BMC Infect Dis. 2008;8 (https://doi.org/10.1186/1471-2334-8-6).
Fregonese F, Ahuja SD, Akkerman OW, Arakaki-Sanchez D, Ayakaka I, Baghaei P et al. Comparison of different treatments for isoniazid-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med. 2018;6:265–75 (https://doi.org/10.1016/S2213-2600(18)30078-X).
Andrade RJ, Tulkens PM. Hepatic safety of antibiotics used in primary care. J Antimicrob Chemother. 2011;66:1431–46 (https://doi.org/10.1093/jac/dkr159).
Centers for Disease Control and Prevention. Update. Fatal and severe liver injuries associated with rifampin and pyrazinamide for latent tuberculosis infection, and revisions in American Thoracic Society/CDC recommendations-United States, 2001. MMWR Morb Mortal Wkly. 2001;50:733–5 (https://pubmed.ncbi.nlm.nih.gov/11787580/).
Voogt GR, Schoeman HS. Ototoxicity of aminoglycoside drugs in tuberculosis treatment. S Afr J Commun Disord. 1996;43:3–6 (https://pubmed.ncbi.nlm.nih.gov/9265840/).
Gülbay BE, Gürkan ÖU, Yıldız ÖA, Önen ZP, Erkekol FÖ, Baççıoğlu A et al. Side effects due to primary antituberculosis drugs during the initial phase of therapy in 1149 hospitalized patients for tuberculosis. Respir Med. 2006;100:1834–42 (https://doi.org/10.1016/j.rmed.2006.01.014).
Bloss E, Kukša L, Holtz TH, Riekstina V, Skripčonoka V, Kammerer S et al. Adverse events related to multidrugresistant tuberculosis treatment, Latvia, 2000–2004. Int J Tuberc Lung Dis. 2010;14:275–81 (https://pubmed.ncbi.nlm.nih.gov/20132617/).
Oxlade O, Falzon D, Menzies D. The impact and cost-effectiveness of strategies to detect drug-resistant tuberculosis. Eur Respir J. 2012;39:626–34 (https://doi.org/10.1183/09031936.00065311).
Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children (WHO/HTM/TB/2013.16). Geneva: World Health Organization; 2013 (https://apps.who.int/iris/bitstream/handle/10665/112472/9789241506335_eng.pdf).
Bollela VR, Namburete NI, Feliciano CS, Macheque D, Harrison LH, Caminero J. Detection of katG and inhA mutations to guide isoniazid and ethionamide use for drug-resistant tuberculosis. Int J Tuberc Lung Dis. 2016;20:1099–104 (https://doi.org/10.5588/ijtld.15.0864).
Blumberg HM, Burman WJ, Chaisson RE, Daley CL, Etkind S, LN F et al. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med. 2003;167:603–62 (https://doi.org/10.1164/rccm.167.4.603).
Ahmad Khan F, Minion J, Al-Motairi A, Benedetti A, Harries AD, Menzies D. An updated systematic review and meta-analysis on the treatment of active tuberculosis in patients with HIV infection. Clin Infect Dis. 2012;55:1154–63 (https://doi.org/10.1093/cid/cis630).
Lan Z, Ahmad N, Baghaei P, Barkane L, Benedetti A, Brode SK et al. Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med. 2020;
Zignol M, Dean AS, Alikhanova N, Andres S, Cabibbe AM, Cirillo DM et al. Population-based resistance of Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones: results from a multicountry surveillance project. Lancet Infect Dis. 2016;16:1185–92 (https://doi.org/10.1016/S1473-3099(16)30190-6).
Ramachandran G, Kumar AKH, Srinivasan R, Geetharani A, Sugirda P, Nandhakumar B et al. Effect of rifampicin & isoniazid on the steady state pharmacokinetics of moxifloxacin. Indian J Med Res. 2012;136:979 (https://pubmed.ncbi.nlm.nih.gov/23391793/).
Lempens P, Meehan CJ, Vandelannoote K, Fissette K, de Rijk P, Van Deun A et al. Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Sci Rep. 2018;8 (https://doi.org/10.1038/s41598-018-21378-x).
Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America clinical practice guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis. 2016;63:e147–e95 (https://doi.org/10.1093/cid/ciw376).
Kurbatova EV, Gammino VM, Bayona J, Becerra M, Danilovitz M, Falzon D et al. Frequency and type of microbiological monitoring of multidrug-resistant tuberculosis treatment. Int J Tuberc Lung Dis. 2011;15:1553–5 (https://doi.org/10.5588/ijtld.11.0101).
Mitnick CD, White RA, Lu C, Rodriguez CA, Bayona J, Becerra MC et al. Multidrug-resistant tuberculosis treatment failure detection depends on monitoring interval and microbiological method. Eur Respir J. 2016;48:1160–70 (https://doi.org/10.1183/13993003.00462-2016).
Friedrich SO, Rachow A, Saathoff E, Singh K, Mangu CD, Dawson R et al. Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early sputum biomarker of response to tuberculosis treatment. Lancet Respir Med. 2013;1:462–70 (https://doi.org/10.1016/S2213-2600(13)70119-X).
Jayakumar A, Savic RM, Everett CK, Benator D, Alland D, Heilig CM et al. Xpert MTB/RIF assay shows faster clearance of Mycobacterium tuberculosis DNA with higher levels of rifapentine exposure. J Clin Microbiol. 2016;54:3028–33 (https://doi.org/10.1128/JCM.01313-16).
Burgos M, Gonzalez LC, Paz EA, Gournis E, Kawamura LM, Schecter G et al. Treatment of multidrug-resistant tuberculosis in San Francisco: an outpatient-based approach. Clin Infect Dis. 2005;40:968–75 (https://doi.org/10.1086/428582).
Dheda K, Shean K, Zumla A, Badri M, Streicher EM, Page-Shipp L et al. Early treatment outcomes and HIV status of patients with extensively drug-resistant tuberculosis in South Africa: a retrospective cohort study. Lancet. 2010;375:1798–807 (https://doi.org/10.1016/S0140-6736(10)60492-8).
El Sahly H, Teeter L, Pawlak R, Musser J, Graviss E. Drug-resistant tuberculosis: a disease of target populations in Houston, Texas. J Infect. 2006;53:5–11 (https://doi.org/10.1016/j.jinf.2005.10.002).
Jamal L, Guibu I, Tancredi M, Ramalho M, Vasconcelos G, Cota I et al. Reliability and usefulness of TB/HIV co-infection data proceeding from developing countries. Bangkok, Thailand: International Conference on AIDS; 2004.
Leimane V, Dravniece G, Riekstina V, Sture I, Kammerer S, Chen MP et al. Treatment outcome of multidrug/extensively drug-resistant tuberculosis in Latvia, 2000–2004. Eur Respir J. 2010;36:584–93 (https://doi.org/10.1183/09031936.00003710).
Migliori GB, Besozzi G, Girardi E, Kliiman K, Lange C, Toungoussova OS et al. Clinical and operational value of the extensively drug-resistant tuberculosis definition. Eur Respir J. 2007;30:623–6 (https://doi.org/10.1183/09031936.00077307).
Palmero D, Ritacco V, Ambroggi M, Poggi S, Güemes Gurtubay J, Alberti F et al. Multidrug-resistant tuberculosis in AIDS patients at the beginning of the millennium. Medicina. 2006;66:399–404 (https://pubmed.ncbi.nlm.nih.gov/17137168/).
Shean KP, Willcox PA, Siwendu SN, Laserson KF, Gross L, Kammerer S et al. Treatment outcome and follow-up of multidrug-resistant tuberculosis patients, West Coast/Winelands, South Africa, 1992–2002. Int J Tuberc Lung Dis. 2008;12:1182–9 (https://pubmed.ncbi.nlm.nih.gov/18812049/).
Varma JK, Nateniyom S, Akksilp S, Mankatittham W, Sirinak C, Sattayawuthipong W et al. HIV care and treatment factors associated with improved survival during TB treatment in Thailand: an observational study. BMC Infect Dis. 2009;9 (https://doi.org/10.1186/1471-2334-9-42).
Abdool Karim SS, Naidoo K, Grobler A, Padayatchi N, Baxter C, Gray A et al. Timing of initiation of antiretroviral drugs during tuberculosis therapy. N Engl J Med. 2010;362:697–706 (https://doi.org/10.1056/NEJMoa0905848).
Havlir D, Ive P, Kendall M, Luetkemeyer A, Swindells S, Kumwenda J et al. International randomized trial of Immediate vs. early ART in HIV+ patients treated for TB: ACTG 5221 STRIDE study. Boston, United States of America 8th Conference on Retroviruses and Opportunistic Infections; 2011 (CROI conference abstracts prior to 2014 are no longer available online).
Blanc F, Sok T, Laureillard D, Borand L, Rekacewicz C, Nerrienet E et al. Significant enhancement in survival with early (2 weeks) vs. late (8 weeks) initiation of highly active antiretroviral treatment (HAART) in severely immunosuppressed HIV-infected adults with newly diagnosed tuberculosis: “34% reduction in mortality in early arm”. Vienna, Austria: 18th International AIDS Conference; 2010 (www.natap.org/2010/IAS/IAS_91.htm).
Fox GJ, Mitnick CD, Benedetti A, Chan ED, Becerra M, Chiang C-Y et al. Surgery as an adjunctive treatment for multidrug-resistant tuberculosis: an individual patient data metaanalysis. Clin Infect Dis. 2016;62:887–95 (https://doi.org/10.1093/cid/ciw002).
Harris RC, Khan MS, Martin LJ, Allen V, Moore DAJ, Fielding K et al. The effect of surgery on the outcome of treatment for multidrug-resistant tuberculosis: a systematic review and meta-analysis. BMC Infect Dis. 2016;16 (https://doi.org/10.1186/s12879-016-1585-0).
Olaru ID, Beliz Meier M, Mirzayev F, Prodanovic N, Kitchen PJ, Schumacher SG et al. Global prevalence of hepatitis B or hepatitis C infection among patients with tuberculosis disease: systematic review and metaanalysis. EClinicalMedicine. 2023;58:101938 (https://doi.org/10.1016/j.eclinm.2023.101938).
Zoratti MJ, Siddiqua A, Morassut RE, Zeraatkar D, Chou R, van Holten J et al. Pangenotypic direct acting antivirals for the treatment of chronic hepatitis C virus infection: a systematic literature review and metaanalysis. EClinicalMedicine. 2020;18:100237 (https://doi.org/10.1016/j.eclinm.2019.12.007).
Olaru ID, Beliz Meier M, Schumacher SG, Prodanovic N, Kitchen PJ, Mirzayev F et al. Co-administration of treatment for drug-resistant TB and hepatitis C. Int J Tuberc Lung Dis. 2023;27:66–8 (https://doi.org/10.5588/ijtld.22.0403).
Schunemann HJ, Zhang Y, Oxman AD, Expert Evidence in Guidelines G. Distinguishing opinion from evidence in guidelines. BMJ. 2019;366:l4606 (https://doi.org/10.1136/bmj.l4606).
Mustafa RA, Garcia CAC, Bhatt M, Riva JJ, Vesely S, Wiercioch W et al. GRADE notes: How to use GRADE when there is “no” evidence? A case study of the expert evidence approach. J Clin Epidemiol. 2021;137:231–5 (https://doi.org/10.1016/j.jclinepi.2021.02.026).
Raudenbush SW. Analyzing effect sizes: random-effects models. In: Cooper H, Hedges L & Valentine J (eds.), In: The handbook of research synthesis and meta-analysis (2nd edition). New York, NY: Russell Sage Foundation; 2009:295–316.
Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med. 2001;20:3875–89 (https://doi.org/10.1002/sim.1009).
Langan D, Higgins JPT, Jackson D, Bowden J, Veroniki AA, Kontopantelis E et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth Methods. 2019;10:83–98 (https://doi.org/10.1002/jrsm.1316).
Sweeting MJ, Sutton AJ, Lambert PC. What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med. 2004;23:1351–75 (https://doi.org/10.1002/sim.1761).
Cochran W. The combination of estimates from different experiments. Biometrics. 1954;10:101–29 (https://doi.org/10.2307/3001666).
Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58 (https://doi.org/10.1002/sim.1186).
Melikyan N, Huerga H, Atshemyan H, Kirakosyan O, Sargsyants N, Aydinyan T et al. Concomitant treatment of chronic hepatitis C with direct-acting antivirals and multidrug-resistant tuberculosis is effective and safe. Open Forum Infect Dis. 2021;8:ofaa653 (https://doi.org/10.1093/ofid/ofaa653).
WHO operational guidelines on tuberculosis. Module 4: Treatment – tuberculosis care and support. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240053519). Licence: CC BY-NC-SA 3.0 IGO.
Updated recommendations on treatment of adolescents and children with chronic HCV infection, and HCV simplified service delivery and diagnostics. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240052734). Licence: CC BY-NC-SA 3.0 IGO.
Bateson A, Ortiz Canseco J, McHugh TD, Witney AA, Feuerriegel S, Merker M et al. Ancient and recent differences in the intrinsic susceptibility of Mycobacterium tuberculosis complex to pretomanid. J Antimicrob Chemother. 2022;77:1685–93 (https://doi.org/10.1093/jac/dkac070).
Boston University. Efficacy and safety of levofloxacin for the treatment of MDR-TB (Opti-Q) [website]. Maryland, USA: US National Library of Medicine; 2022 (https://clinicaltrials.gov/show/NCT01918397).
We use cookies on our website to give you the most relevant experience by remembering your preferences
during repeat visits. By clicking “Accept”, you consent to the use of all the cookies.