Weyer K, Mirzayev F, Migliori GB, van Gemert W, D’Ambrosio L, Zignol M et al. Rapid molecular TB diagnosis: evidence, policy making and global implementation of Xpert MTB/RIF. Eur Respir J. 2013;42:252–71 (https://doi.org/10.1183/09031936.00157212).
WHO consolidated guidelines on tuberculosis. Module 3: Diagnosis – rapid diagnostics for tuberculosis detection, 3rd ed. Geneva: World Health Organization; 2024 (https://www.who.int/publications/i/item/9789240089488).
Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva: World Health Organization; 2018 (https://apps.who.int/iris/handle/10665/275469).
WHO operational handbook on tuberculosis. Module 3: Diagnosis – rapid diagnostics for tuberculosis detection, 3rd ed. Geneva: World Health Organization; 2024 (https://www.who.int/publications/i/item/9789240089501).
WHO operational handbook on tuberculosis. Module 3: diagnosis: rapid diagnostics for tuberculosis detection: Web annex B: critical concentrations for pretomanid and cycloserine: WHO policy statement, 3rd ed. Geneva: World Health Organization; 2024 (https://iris.who.int/handle/10665/376285). Licence: CC BY-NC-SA 3.0 IGO.
Technical report on critical concentrations for TB drug susceptibility testing of medicines used in the treatment of drug-resistant TB. Geneva: World Health Organization; 2018 (https://www.who.int/publications/i/item/WHO-CDS-TB-2018.5).
Baker MA, Harries AD, Jeon CY, Hart JE, Kapur A, Lönnroth K et al. The impact of diabetes on tuberculosis treatment outcomes: a systematic review. BMC Med. 2011;9:81 (https://doi.org/10.1186/1741-7015-9-81).
Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Geneva: World Health Organization; 2014 (https://apps.who.int/iris/handle/10665/130918).
Allwood BW, Byrne A, Meghji J, Rachow A, van der Zalm MM, Schoch OD. Post-Tuberculosis Lung Disease: Clinical Review of an Under-Recognised Global Challenge. Respiration. 2021;100:751–63 (10.1159/000512531).
Meeting report of the WHO expert consultation on the definition of extensively drug-resistant tuberculosis, 27–29 October 2020. Geneva: World Health Organization; 2021 (https://www.who.int/publications/i/item/9789240018662).
Multi-country operational research on the effectiveness and safety of the BPaL regimen for drug-resistant tuberculosis: Unpublished partial cohort analysis (350 individuals enrolled from Indonesia, Kyrgyzstan, the Philippines, Uzbekistan, Vietnam [LIFT-TB initiative], and Nigeria. 2020–2023). Netherlands: KNCV Tuberculosis Foundation (KNCV TB Plus); Unpublished.
Salinger DH, Nedelman JR, Mendel C, Spigelman M, Hermann DJ. Daily Dosing for Bedaquiline in Patients with Tuberculosis. Antimicrob Agents Chemother. 2019;63 (10.1128/aac.00463–19).
Conradie F, Bagdasaryan TR, Borisov S, Howell P, Mikiashvili L, Ngubane N et al. Bedaquiline-pretomanid-linezolid regimens for drug-resistant tuberculosis. N Engl J Med. 2022;387:810–23 (https://doi.org/10.1056/NEJMoa2119430)
Cevik M, Thompson LC, Upton C, Rolla VC, Malahleha M, Mmbaga B et al. Bedaquiline-pretomanidmoxifloxacin-pyrazinamide for drug-sensitive and drug-resistant pulmonary tuberculosis treatment: a phase 2c, open-label, multicentre, partially randomised controlled trial. The Lancet Infectious Diseases. 2024;24:1003–14 (10.1016/S1473–3099(24)00223–8).
Trial to evaluate the efficacy, safety and tolerability of BPaMZ in drug-sensitive (DS-TB) adult patients and drug-resistant (DR-TB) adult patients) (SimpliciTB) [website]. ClinicalTrials.gov. : 2019 (https://clinicaltrials.gov/ct2/show/NCT03338621).
Lan Z, Ahmad N, Baghaei P, Barkane L, Benedetti A, Brode SK et al. Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med. 2020;8:383–94 (10.1016/s2213–2600(20)30047–3).
Imperial MZ, Nedelman JR, Conradie F, Savic RM. Proposed linezolid dosing strategies to minimize adverse events for treatment of extensively drug-resistant tuberculosis. Clin Infect Dis. 2022;74:1736–47 (https://doi.org/10.1093/cid/ciab699).
Alghamdi WA, Al-Shaer MH, An G, Alsultan A, Kipiani M, Barbakadze K et al. Population pharmacokinetics of linezolid in tuberculosis patients: dosing regimen simulation and target attainment analysis. Antimicrob Agents Chemother. 2020;64 (https://doi.org/10.1128/aac.01174-20).
Rao GG, Konicki R, Cattaneo D, Alffenaar JW, Marriott DJE, Neely M. Therapeutic drug monitoring can improve linezolid dosing regimens in current clinical practice: a review of linezolid pharmacokinetics and pharmacodynamics. Ther Drug Monit. 2020;42:83–92 (https://doi.org/10.1097/ftd.0000000000000710).
Howell P, Upton C, Mvuna N, Olugbosi M. Sterile tuberculous granuloma in a patient with XDR-TB treated with bedaquiline, pretomanid and linezolid. BMJ Case Rep. 2021;14 (https://doi.org/10.1136/bcr-2021-245612).
Salinger DH, Subramoney V, Everitt D, Nedelman JR. Population pharmacokinetics of the antituberculosis agent pretomanid. Antimicrob Agents Chemother. 2019;63 (https://doi.org/10.1128/aac.00907-19).
Pandie M, Wiesner L, McIlleron H, Hughes J, Siwendu S, Conradie F et al. Drug-drug interactions between bedaquiline and the antiretrovirals lopinavir/ritonavir and nevirapine in HIV-infected patients with drug-resistant TB. J Antimicrob Chemother. 2016;71:1037–40 (https://doi.org/10.1093/jac/dkv447).
Brust JCM, Gandhi NR, Wasserman S, Maartens G, Omar SV, Ismail NA et al. Effectiveness and cardiac safety of bedaquiline-based therapy for drug-resistant tuberculosis: a prospective cohort study. Clin Infect Dis. 2021;73:2083–92 (https://doi.org/10.1093/cid/ciab335).
Brill MJ, Svensson EM, Pandie M, Maartens G, Karlsson MO. Confirming model-predicted pharmacokinetic interactions between bedaquiline and lopinavir/ritonavir or nevirapine in patients with HIV and drug-resistant tuberculosis. Int J Antimicrob Agents. 2017;49:212–7 (https://doi.org/10.1016/j.ijantimicag.2016.10.020).
Mitnick CD, White RA, Lu C, Rodriguez CA, Bayona J, Becerra MC et al. Multidrug-resistant tuberculosis treatment failure detection depends on monitoring interval and microbiological method. Eur Respir J. 2016;48:1160–70 (https://doi.org/10.1183/13993003.00462-2016).
Rifat D, Li S-Y, Ioerger T, Shah K, Lanoix J-P, Lee J et al. Mutations in fbiD (Rv2983) as a novel determinant of resistance to pretomanid and delamanid in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2020;65:e01948–20 (https://doi.org/10.1128/AAC.01948-20).
Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58:2979–81 (https://doi.org/10.1128/aac.00037-14).
Mulder C, Rupert S, Setiawan E, Mambetova E, Edo P, Sugiharto J et al. Budgetary impact of using BPaL for treating extensively drug-resistant tuberculosis. BMJ Glob Health. 2022;7 (https://doi.org/10.1136/bmjgh-2021-007182).
Gomez GB, Siapka M, Conradie F, Ndjeka N, Garfin AMC, Lomtadze N et al. Cost-effectiveness of bedaquiline, pretomanid and linezolid for treatment of extensively drug-resistant tuberculosis in South Africa, Georgia and the Philippines. BMJ Open. 2021;11:e051521 (https://doi.org/10.1136/bmjopen-2021-051521).
WHO consolidated guidelines on tuberculosis. Module 4: Treatment and care. Geneva: World Health Organization; 2025.
WHO consolidated guidelines on tuberculosis. Module 4: Treatment – drug-resistant tuberculosis treatment, 2022 update. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240063129).
ClinicalTrials.gov. BEAT Tuberculosis (NCT04062201): Building Evidence for Advancing New Treatment for Rifampicin Resistant Tuberculosis (RR-TB) comparing a short course of treatment (containing bedaquiline, delamanid and linezolid) with the current South African standard of care [website]. (https://clinicaltrials.gov/study/NCT04062201).
Padmapriyadarsini C, Vohra V, Bhatnagar A, Solanki R, Sridhar R, Anande L et al. Bedaquiline, Delamanid, Linezolid and Clofazimine for Treatment of Pre-extensively Drug-Resistant Tuberculosis. Clin Infect Dis. 2022;76:e938–46 (10.1093/cid/ciac528).
Use of delamanid in children and adolescents with multidrug-and rifampicin-resistant tuberculosis: information note. Geneva: World Health Organization; 2023 (https://www.who.int/publications/i/item/9789240074309).
Derendinger B, Dippenaar A, de Vos M, Huo S, Alberts R, Tadokera R et al. Bedaquiline resistance in patients with drug-resistant tuberculosis in Cape Town, South Africa: a retrospective longitudinal cohort study. Lancet Microbe. 2023;4:e972-e82 (10.1016/S2666–5247(23)00172–6).
Ismail NA, Omar SV, Moultrie H, Bhyat Z, Conradie F, Enwerem M et al. Assessment of epidemiological and genetic characteristics and clinical outcomes of resistance to bedaquiline in patients treated for rifampicin-resistant tuberculosis: a cross-sectional and longitudinal study. Lancet Infect Dis. 2022;22:496–506 (10.1016/S1473–3099(21)00470–9).
Mallick JS, Nair P, Abbew ET, Van Deun A, Decroo T. Acquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: a systematic review. JAC Antimicrob Resist. 2022;4:dlac029 (10.1093/jacamr/dlac029).
Brooks JT, Solans BP, Beranger A, Schaaf HS, van der Laan L, Sharma S et al. Linezolid PharmacokineticAnemia Modeling in Children with Rifampicin-Resistant Tuberculosis. Clin Infect Dis. 2024; (10.1093/cid/ciae497).
Conradie F. High rate of successful outcomes treating RR-TB with a delamanid-bedaquiline regimen in BEAT Tuberculosis: an interim analysis: World Conference on Lung Health 2022. Paris: International Union Against Tuberculosis and Lung Disease; 2022.
Agyeman AA, Ofori-Asenso R. Efficacy and safety profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob. 2016;15:41 (https://doi.org/10.1186/s12941-016-0156-y).
Jaspard M, Butel N, El Helali N, Marigot-Outtandy D, Guillot H, Peytavin G et al. Linezolid-associated neurologic adverse events in patients with multidrug-resistant tuberculosis, France. Emerg Infect Dis. 2020;26:1792–800 (https://doi.org/10.3201/eid2608.191499).
Taubel J, Prasad K, Rosano G, Ferber G, Wibberley H, Cole ST et al. Effects of the fluoroquinolones moxifloxacin and levofloxacin on the QT subintervals: sex differences in ventricular repolarization. J Clin Pharmacol. 2020;60:400–8 (https://doi.org/10.1002/jcph.1534).
Senneville E, Legout L, Valette M, Yazdanpanah Y, Giraud F, Beltrand E et al. Risk factors for anaemia in patients on prolonged linezolid therapy for chronic osteomyelitis: a case-control study. J Antimicrob Chemother. 2004;54:798–802 (https://doi.org/10.1093/jac/dkh409).
Kerkhoff AD, Meintjes G, Opie J, Vogt M, Jhilmeet N, Wood R et al. Anaemia in patients with HIV-associated TB: relative contributions of anaemia of chronic disease and iron deficiency. Int J Tuberc Lung Dis. 2016;20:193– 201 (https://doi.org/10.5588/ijtld.15.0558).
Barzegari S, Afshari M, Movahednia M, Moosazadeh M. Prevalence of anemia among patients with tuberculosis: A systematic review and meta-analysis. Indian J Tuberc. 2019;66:299–307 (https://doi.org/10.1016/j.ijtb.2019.04.002).
Oehadian A, Santoso P, Menzies D, Ruslami R. Concise clinical review of hematologic toxicity of linezolid in multidrug-resistant and extensively drug-resistant tuberculosis: role of mitochondria. Tuberc Respir Dis (Seoul). 2022;85:111–21 (https://doi.org/10.4046/trd.2021.0122).
Harris RC, Grandjean L, Martin LJ, Miller AJ, Nkang JE, Allen V et al. The effect of early versus late treatment initiation after diagnosis on the outcomes of patients treated for multidrug-resistant tuberculosis: a systematic review. BMC Infect Dis. 2016;16:193 (https://doi.org/10.1186/s12879-016-1524-0).
Htun YM, Khaing TMM, Aung NM, Yin Y, Myint Z, Aung ST et al. Delay in treatment initiation and treatment outcomes among adult patients with multidrug-resistant tuberculosis at Yangon Regional Tuberculosis Centre, Myanmar: a retrospective study. PLoS One. 2018;13:e0209932 (https://doi.org/10.1371/journal.pone.0209932).
Kempker RR, Kipiani M, Mirtskhulava V, Tukvadze N, Magee MJ, Blumberg HM. Acquired drug resistance in Mycobacterium tuberculosis and poor outcomes among patients with multidrug-resistant tuberculosis. Emerg Infect Dis. 2015;21:992–1001 (https://doi.org/10.3201/eid2106.141873).
Shenje J, Ifeoma Adimora-Nweke F, Ross IL, Ntsekhe M, Wiesner L, Deffur A et al. Poor penetration of antibiotics into pericardium in pericardial tuberculosis. EBioMedicine. 2015;2:1640–9 (https://doi.org/10.1016/j.ebiom.2015.09.025).
Bonnet I, Haddad E, Guglielmetti L, Bemer P, Bernard L, Bourgoin A et al. Clinical features and outcome of multidrug-resistant osteoarticular tuberculosis: a 12-year case series from France. Microorganisms. 2022;10 (https://doi.org/10.3390/microorganisms10061215).
Wen S, Zhang T, Yu X, Dong W, Lan T, Fan J et al. Bone penetration of linezolid in osteoarticular tuberculosis patients of China. Int J Infect Dis. 2021;103:364–9 (https://doi.org/10.1016/j.ijid.2020.11.203).
Isanaka S, Mugusi F, Urassa W, Willett WC, Bosch RJ, Villamor E et al. Iron deficiency and anemia predict mortality in patients with tuberculosis. J Nutr. 2012;142:350–7 (https://doi.org/10.3945/jn.111.144287).
Management of drug-resistant tuberculosis in children: a field guide, 6th ed. Boston, USA: The Sentinel Project for Pediatric Drug-Resistant Tuberculosis; 2024.
Lotia Farrukh I, Lachenal N, Adenov MM, Ahmed S, Algozhin Y, Coutisson S et al. Pregnancy and Birth Outcomes in Patients With Multidrug-Resistant Tuberculosis Treated With Regimens That Include New and Repurposed Drugs. Clin Infect Dis. 2024;78:144–8 (10.1093/cid/ciad445).
Gupta A, Mathad JS, Abdel-Rahman SM, Albano JD, Botgros R, Brown V et al. Toward Earlier Inclusion of Pregnant and Postpartum Women in Tuberculosis Drug Trials: Consensus Statements From an International Expert Panel. Clin Infect Dis. 2016;62:761–9 (10.1093/cid/civ991).
Melikyan N, Huerga H, Atshemyan H, Kirakosyan O, Sargsyants N, Aydinyan T et al. Concomitant treatment of chronic hepatitis C with direct-acting antivirals and multidrug-resistant tuberculosis is effective and safe. Open Forum Infect Dis. 2021;8:ofaa653 (https://doi.org/10.1093/ofid/ofaa653).
Rich M. The Role of Pyrazinamide in the endTB Regimens. 2024.
Irwin SM, Prideaux B, Lyon ER, Zimmerman MD, Brooks EJ, Schrupp CA et al. Bedaquiline and pyrazinamide treatment responses are affected by pulmonary lesion heterogeneity in Mycobacterium tuberculosis infected C3HeB/FeJ Mice. ACS Infect Dis. 2016;2:251–67 (https://doi.org/10.1021/acsinfecdis.5b00127).
Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook AM et al. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med. 2020;382:893–902 (https://doi.org/10.1056/NEJMoa1901814).
Berry C, du Cros P, Fielding K, Gajewski S, Kazounis E, McHugh TD et al. TB-PRACTECAL: study protocol for a randomised, controlled, open-label, phase II-III trial to evaluate the safety and efficacy of regimens containing bedaquiline and pretomanid for the treatment of adult patients with pulmonary multidrug-resistant tuberculosis. Trials. 2022;23:484 (https://doi.org/10.1186/s13063-022-06331-8).
Huerga H, Khan U, Bastard M, Mitnick CD, Lachenal N, Khan PY et al. Safety and effectiveness outcomes from a 14-country cohort of patients with multi-drug resistant tuberculosis treated concomitantly with bedaquiline, delamanid and other second-line drugs. Clin Infect Dis. 2022:ciac176 (https://doi.org/10.1093/cid/ciac176).
Line probe assays for detection of drug-resistant tuberculosis: interpretation and reporting manual for laboratory staff and clinicians. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240046665).
Dookie N, Khan A, Padayatchi N, Naidoo K. Application of next generation sequencing for diagnosis and clinical management of drug-resistant tuberculosis: Updates on recent developments in the field. Front Microbiol. 2022;13 (https://doi.org/10.3389/fmicb.2022.775030).
The CRyPTIC Consortium. Genome-wide association studies of global Mycobacterium tuberculosis resistance to 13 antimicrobials in 10,228 genomes identify new resistance mechanisms. PLoS Biol. 2022;20:e3001755 (https://doi.org/10.1371/journal.pbio.3001755).
Moodliar R, Aksenova V, Frias MVG, van de Logt J, Rossenu S, Birmingham E et al. Bedaquiline for multidrug-resistant TB in paediatric patients. Int J Tuberc Lung Dis. 2021;25:716–24 (https://doi.org/10.5588/ijtld.21.0022).
Ndjeka N, Campbell JR, Meintjes G, Maartens G, Schaaf HS, Hughes J et al. Treatment outcomes 24 months after initiating short, all-oral bedaquiline-containing or injectable-containing rifampicin-resistant tuberculosis treatment regimens in South Africa: a retrospective cohort study. Lancet Infect Dis. 2022;22:1042–51 (https://doi.org/10.1016/S1473-3099(21)00811-2).
Kim CT, Kim T-O, Shin H-J, Ko YC, Hun Choe Y, Kim H-R et al. Bedaquiline and delamanid for the treatment of multidrug-resistant tuberculosis: a multicentre cohort study in Korea. Eur Respir J. 2018;51:1702467 (https://doi.org/10.1183/13993003.02467-2017).
Pontali E, Sotgiu G, Tiberi S, D’Ambrosio L, Centis R, Migliori GB. Cardiac safety of bedaquiline: a systematic and critical analysis of the evidence. Eur Respir J. 2017;50:1801386 (https://doi.org/10.1183/13993003.01462-2017).
Guglielmetti L, Jaspard M, Le Dû D, Lachâtre M, Marigot-Outtandy D, Bernard C et al. Long-term outcome and safety of prolonged bedaquiline treatment for multidrug-resistant tuberculosis. Eur Respir J. 2017;49:1601799 (https://doi.org/10.1183/13993003.01799-2016).
Dooley KE, Rosenkranz S, Conradie F, Moran L, Hafner R, von Groote-Bidlingmaier F et al. QT effects of bedaquiline, delamanid or both in MDR-TB patients: the DELIBERATE trial (DELamanId BEdaquiline for ResistAnt TubErculosis). Maryland: Johns Hopkins University School of Medicine; Unpublished.
Olayanju O, Esmail A, Limberis J, Dheda K. A regimen containing bedaquiline and delamanid compared to bedaquiline in patients with drug-resistant tuberculosis. Eur Respir J. 2020;55:1901181 (https://doi.org/10.1183/13993003.01181-2019).
Hewison C, Khan U, Bastard M, Lachenal N, Coutisson S, Osso E et al. Safety of treatment regimens containing bedaquiline and delamanid in the endTB Cohort. Clin Infect Dis. 2022;75:1006–13 (https://doi.org/10.1093/cid/ciac019).
Ismail N, Rivière E, Limberis J, Huo S, Metcalfe JZ, Warren RM et al. Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis. Lancet Microbe. 2021;2:e604–e16 (https://doi.org/10.1016/S2666-5247(21)00175-0).
Wu S-H, Chan H-H, Hsiao H-C, Jou R. Primary bedaquiline resistance among cases of drug-resistant tuberculosis in Taiwan. Front Microbiol. 2021;12 (https://doi.org/10.3389/fmicb.2021.754249).
Tang S, Yao L, Hao X, Zhang X, Liu G, Liu X et al. Efficacy, safety and tolerability of linezolid for the treatment of XDR-TB: a study in China. Eur Respir J. 2015;45:161–70 (https://doi.org/10.1183/09031936.00035114).
Im JH, Baek JH, Kwon HY, Lee J-S. Incidence and risk factors of linezolid-induced lactic acidosis. Int J Infect Dis. 2015;31:47–52 (https://doi.org/10.1016/j.ijid.2014.12.009).
Lee M, Lee J, Carroll MW, Choi H, Min S, Song T et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. New Eng J Med. 2012;367:1508–18 (https://doi.org/10.1056/NEJMoa1201964).
Mao Y, Dai D, Jin H, Wang Y. The risk factors of linezolid-induced lactic acidosis: a case report and review. Med. 2018;97:e12114 (https://doi.org/10.1097/MD.0000000000012114).
Technical report on the pharmacokinetics and pharmacodynamics (PK/PD) of medicines used in the treatment of drug-resistant tuberculosis. Geneva: World Health Organization; 2018 (https://apps.who.int/iris/handle/10665/260440).
Wasserman S, Brust JC, Abdelwahab MT, Little F, Denti P, Wiesner L et al. Linezolid toxicity in patients with drug-resistant tuberculosis: a prospective cohort study. J Antimicrob Chemother. 2022;77:1146–54 (https://doi.org/10.1093/jac/dkac019).
Diacon AH, De Jager VR, Dawson R, Narunsky K, Vanker N, Burger DA et al. Fourteen-day bactericidal activity, safety, and pharmacokinetics of linezolid in adults with drug-sensitive pulmonary tuberculosis. Antimicrob Agents Chemother. 2020;64 (https://doi.org/10.1128/AAC.02012-19).
Lawrence KR, Adra M, Gillman PK. Serotonin toxicity associated with the use of linezolid: a review of postmarketing data. Clin Infect Dis. 2006;42:1578–83 (https://doi.org/10.1086/503839).
Tyeku N, Apolisi I, Daniels J, Beko B, Memani B, Cengani L et al. Pediatric delamanid treatment for children with rifampicin-resistant TB. Int J Tuberc Lung Dis. 2022;26:986–8 (https://doi.org/10.5588/ijtld.22.0264).
Tucker EW, Pieterse L, Zimmerman MD, Udwadia ZF, Peloquin CA, Gler MT et al. Delamanid central nervous system pharmacokinetics in tuberculous meningitis in rabbits and humans. Antimicrob Agents Chemother. 2019;63 (https://doi.org/10.1128/AAC.00913-19).
Cannon JP, Lee TA, Clark NM, Setlak P, Grim SA. The risk of seizures among the carbapenems: a meta-analysis. J Antimicrob Chemother. 2014;69:2043–55 (https://doi.org/10.1093/jac/dku111).
Chambers HF, Turner J, Schecter GF, Kawamura M, Hopewell PC. Imipenem for treatment of tuberculosis in mice and humans. Antimicrob Agents Chemother. 2005;49:2816–21 (https://doi.org/10.1128/AAC.49.7.2816-2821.2005).
Dooley KE, Obuku EA, Durakovic N, Belitsky V, Mitnick C, Nuermberger EL et al. World Health Organization Group 5 drugs for the treatment of drug-resistant tuberculosis: unclear efficacy or untapped potential? J Infect Dis. 2013;207:1352–8 (https://doi.org/10.1093/infdis/jis460).
Garges HP, Alexander KA. Pharmacology review: newer antibiotics: imipenem/cilastatin and meropenem. NeoReviews. 2003;4:364e–8 (https://doi.org/10.1542/neo.4.12.e364).
Hornik CP, Herring AH, Benjamin DK, Capparelli EV, Kearns GL, van den Anker J et al. Adverse events associated with meropenem versus imipenem/cilastatin therapy in a large retrospective cohort of hospitalized infants. Pediatr Infect Dis J. 2013;32:748–53 (https://doi.org/10.1097/INF.0b013e31828be70b).
Dauby N, Muylle I, Mouchet F, Sergysels R, Payen M-C. Meropenem/clavulanate and linezolid treatment for extensively drug-resistant tuberculosis. Pediatr Infect Dis J. 2011;30:812–3 (https://doi.org/10.1097/INF.0b013e3182154b05).
De Lorenzo S, Alffenaar JW, Sotgiu G, Centis R, D’Ambrosio L, Tiberi S et al. Efficacy and safety of meropenem-clavulanate added to linezolid-containing regimens in the treatment of MDR-/XDR-TB. Eur Respir J. 2013;41:1386–92 (https://doi.org/10.1183/09031936.00124312).
Payen M, Muylle I, Vandenberg O, Mathys V, Delforge M, Van den Wijngaert S et al. Meropenem-clavulanate for drug-resistant tuberculosis: a follow-up of relapse-free cases. Int J Tuberc Lung Dis. 2018;22:34–9 (https://doi.org/10.5588/ijtld.17.0352).
Trébucq A, Schwoebel V, Kashongwe Z, Bakayoko A, Kuaban C, Noeske J et al. Treatment outcome with a short multidrug-resistant tuberculosis regimen in nine African countries. Int J Tuberc Lung Dis. 2018;22:17– 25 (https://doi.org/10.5588/ijtld.17.0498).
Park-Wyllie LY, Juurlink DN, Kopp A, Shah BR, Stukel TA, Stumpo C et al. Outpatient gatifloxacin therapy and dysglycemia in older adults. New Eng J Med. 2006;354:1352–61 (https://doi.org/10.1056/NEJMoa055191).
Katiyar SK, Bihari S, Prakash S, Mamtani M, Kulkarni H. A randomised controlled trial of high-dose isoniazid adjuvant therapy for multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2008;12:139–45 (https://pubmed.ncbi.nlm.nih.gov/18230245/).
Sun F, Ruan Q, Wang J, Chen S, Jin J, Shao L et al. Linezolid manifests a rapid and dramatic therapeutic effect for patients with life-threatening tuberculous meningitis. Antimicrob Agents Chemother. 2014;58:6297– 301 (https://doi.org/10.1128/AAC.02784-14).
Thwaites GE, Bhavnani SM, Chau TTH, Hammel JP, Torok ME, Van Wart SA et al. Randomized pharmacokinetic and pharmacodynamic comparison of fluoroquinolones for tuberculous meningitis. Antimicrob Agents Chemother. 2011;55:3244–53 (https://doi.org/10.1128/AAC.00064-11).
Ramachandran G, Kumar AH, Srinivasan R, Geetharani A, Sugirda P, Nandhakumar B et al. Effect of rifampicin & isoniazid on the steady state pharmacokinetics of moxifloxacin. Indian J Med Res. 2012;136:979 (https://pubmed.ncbi.nlm.nih.gov/23391793/).
Briasoulis A, Agarwal V, Pierce WJ. QT prolongation and torsade de pointes induced by fluoroquinolones: infrequent side effects from commonly used medications. Cardiology. 2011;120:103–10 (https://doi.org/10.1159/000334441).
Cho Y, Park HS. Association of oral ciprofloxacin, levofloxacin, ofloxacin and moxifloxacin with the risk of serious ventricular arrhythmia: a nationwide cohort study in Korea. BMJ Open. 2018;8 (http://dx.doi.org/10.1136/bmjopen-2017-020974).
Baniasadi S, Eftekhari P, Tabarsi P, Fahimi F, Raoufy MR, Masjedi MR et al. Protective effect of N-acetylcysteine on antituberculosis drug-induced hepatotoxicity. European J Gastroent Hepatol. 2010;22:1235–8 (https://doi.org/10.1183/13993003.congress-2016.PA2716).
van Hest R, Baars H, Kik S, van Gerven P, Trompenaars M-C, Kalisvaart N et al. Hepatotoxicity of rifampinpyrazinamide and isoniazid preventive therapy and tuberculosis treatment. Clin Infect Dis. 2004;39:488–96 (https://doi.org/10.1086/422645).
Peloquin CA, Jaresko GS, Yong C-L, Keung A, Bulpitt AE, Jelliffe RW. Population pharmacokinetic modeling of isoniazid, rifampin, and pyrazinamide. Antimicrob Agents Chemother. 1997;41:2670–9 (https://doi.org/10.1128/AAC.41.12.2670).
Ahuja SD, Ashkin D, Avendano M, Banerjee R, Bauer M, Bayona JN et al. Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients. PLoS Med. 2012;9:e1001300 (10.1371/journal.pmed.1001300).
Campbell J, Falzon D, Mirzayev F, Jaramillo E, Migliori G, Mitnick C et al. Improving quality of patient data for treatment of multidrug-or rifampin-resistant tuberculosis. Emerg Infect Dis. 2020;26 (https://doi.org/10.3201/eid2603.190997).
Fox GJ, Mitnick CD, Benedetti A, Chan ED, Becerra M, Chiang C-Y et al. Surgery as an adjunctive treatment for multidrug-resistant tuberculosis: an individual patient data meta-analysis. Clin Infect Dis. 2016;62:887– 95 (https://doi.org/10.1093/cid/ciw002).
Kang M, Kim H, Choi Y, Kim K, Shim Y, Koh W et al. Surgical treatment for multidrug-resistant and extensive drug-resistant tuberculosis. Ann Thorac Surg. 2010;89:1597–602 (https://doi.org/10.1016/j.athoracsur.2010.02.020).
Harris RC, Khan MS, Martin LJ, Allen V, Moore DAJ, Fielding K et al. The effect of surgery on the outcome of treatment for multidrug-resistant tuberculosis: a systematic review and meta-analysis. BMC Infect Dis. 2016;16 (https://doi.org/10.1186/s12879-016-1585-0).
Chotmongkol V, Jitpimolmard S, Thavornpitak Y. Corticosteroid in tuberculous meningitis. J Med Assoc Thai. 1996;79:83–90 (https://pubmed.ncbi.nlm.nih.gov/8868018/).
Kumarvelu S, Prasad K, Khosla A, Behari M, Ahuja GK. Randomized controlled trial of dexamethasone in tuberculous meningitis. Tubercle Lung Dis. 1994;75:203–7 (https://doi.org/10.1016/0962-8479(94)90009-4).
Malhotra HS, Garg RK, Singh MK, Agarwal A, Verma R. Corticosteroids (dexamethasone versus intravenous methylprednisolone) in patients with tuberculous meningitis. Ann Trop Med Parasit. 2009;103:625–34 (https://doi.org/10.1179/000349809X12502035776315).
Schoeman JF, Van Zyl LE, Laubscher JA, Donald PR. Effect of corticosteroids on intracranial pressure, computed tomographic findings, and clinical outcome in young children with tuberculous meningitis. Pediatrics. 1997;99:226–31 (https://doi.org/10.1542/peds.99.2.226).
Thwaites GE, Nguyen DB, Nguyen HD, Hoang TQ, Do TTO, Nguyen TCT et al. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. New Eng J Med. 2004;351:1741–51 (https://doi.org/10.1056/NEJMoa040573).
Critchley JA, Young F, Orton L, Garner P. Corticosteroids for prevention of mortality in people with tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13:223–37 (https://doi.org/10.1016/S1473-3099(12)70321-3).
Hakim JG, Ternouth I, Mushangi E, Siziya S, Robertson V, Malin A. Double blind randomised placebo controlled trial of adjunctive prednisolone in the treatment of effusive tuberculous pericarditis in HIV seropositive patients. Heart. 2000;84:183–8 (https://doi.org/10.1136/heart.84.2.183).
Mayosi BM, Ntsekhe M, Bosch J, Pandie S, Jung H, Gumedze F et al. Prednisolone and Mycobacterium indicus pranii in tuberculous pericarditis. New Eng J Med. 2014;371:1121–30 (https://doi.org/10.1056/NEJMoa1407380).
Mayosi BM, Ntsekhe M, Volmink JA, Commerford PJ. Interventions for treating tuberculous pericarditis. Cochrane Database Syst Rev 2002:CD000526 (https://doi.org/10.1002/14651858.CD000526).
Reuter H, Burgess LJ, Louw VJ, Doubell AF. Experience with adjunctive corticosteroids in managing tuberculous pericarditis. Cardiovasc J S Afr. 2006;17:233–8 (https://pubmed.ncbi.nlm.nih.gov/17117227/).
Schrire V. Experience with pericarditis at Groote Schuur Hospital, Cape Town: an analysis of one hundred and sixty cases studied over a six-year period. S Afr Med J. 1959;33:810–7 (https://pubmed.ncbi.nlm.nih. gov/14443596/).
Strang JI, Kakaza HH, Gibson DG, Allen BW, Mitchison DA, Evans DJ et al. Controlled clinical trial of complete open surgical drainage and of prednisolone in treatment of tuberculous pericardial effusion in Transkei. Lancet. 1988;2:759–64 (https://doi.org/10.1016/s0140-6736(88)92415-4).
Strang JI, Kakaza HH, Gibson DG, Girling DJ, Nunn AJ, Fox W. Controlled trial of prednisolone as adjuvant in treatment of tuberculous constrictive pericarditis in Transkei. Lancet. 1987;2:1418–22 (https://doi.org/10.1016/s0140-6736(87)91127-5).
Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. Geneva: World Health Organization; 2021 (https://www.who.int/publications/i/item/9789240031593).
Lan Z, Ahmad N, Baghaei P, Barkane L, Benedetti A, Brode SK et al. Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med. 2020; (https://doi.org/10.1016/S2213-2600(20)30047-3).
Olaru ID, Beliz Meier M, Mirzayev F, Prodanovic N, Kitchen PJ, Schumacher SG et al. Global prevalence of hepatitis B or hepatitis C infection among patients with tuberculosis disease: systematic review and meta-analysis. EClinicalMedicine. 2023;58:101938 (https://doi.org/10.1016/j.eclinm.2023.101938).
Zoratti MJ, Siddiqua A, Morassut RE, Zeraatkar D, Chou R, van Holten J et al. Pangenotypic direct acting antivirals for the treatment of chronic hepatitis C virus infection: a systematic literature review and meta-analysis. EClinicalMedicine. 2020;18:100237 (https://doi.org/10.1016/j.eclinm.2019.12.007).
Olaru ID, Beliz Meier M, Schumacher SG, Prodanovic N, Kitchen PJ, Mirzayev F et al. Co-administration of treatment for drug-resistant TB and hepatitis C. Int J Tuberc Lung Dis. 2023;27:66–8 (https://doi.org/10.5588/ijtld.22.0403).
Updated recommendations on treatment of adolescents and children with chronic HCV infection, and HCV simplified service delivery and diagnostics. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240052734).
HCV guidance: recommendations for testing, managing, and treating hepatitis C [website]. American Association for the Study of Liver Diseases, Infectious Diseases Society of America; 2024 (https://www.hcvguidelines.org/).
Dhiman RK, Saraswat VA, Rajekar H, Reddy C, Chawla YK. A guide to the management of tuberculosis in patients with chronic liver disease. J Clin Exp Hepatol. 2012;2:260–70 (https://doi.org/10.1016/j.jceh.2012.07.007).
Saukkonen JJ, Cohn DL, Jasmer RM, Schenker S, Jereb JA, Nolan CM et al. An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med. 2006;174:935–52 (https://doi.org/10.1164/rccm.200510-1666ST).
Kempker RR, Alghamdi WA, Al-Shaer MH, Burch G, Peloquin CA. A Pharmacology Perspective of Simultaneous Tuberculosis and Hepatitis C Treatment. Antimicrob Agents Chemother. 2019;63 (10.1128/AAC.01215–19).
Paterson JM, Mamdani MM, Manno M, Juurlink DN, Canadian Drug Safety Effectiveness Research Network. Fluoroquinolone therapy and idiosyncratic acute liver injury: a population-based study. CMAJ. 2012;184: 1565–70 (https://doi.org/10.1503/cmaj.111823).
Budha NR, Lee RE, Meibohm B. Biopharmaceutics, pharmacokinetics and pharmacodynamics of antituberculosis drugs. Curr Med Chem. 2008;15:809–25 (https://doi.org/10.2174/092986708783955509).
Blumberg HM, Burman WJ, Chaisson RE, Daley CL, Etkind SC, Friedman LN et al. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med. 2003;167:603–62 (https://doi.org/10.1164/rccm.167.4.603).
Gumbo T. Chemotherapy of tuberculosis, Mycobacterium avium complex disease, and leprosy. In: Brunton L, Knollmann B & Hilal-Dandan R (eds.), In: Goodman & Gilman’s the pharmacological basis of therapeutics. New York, NY: McGraw Hill Medical; 2018.
De Bus L, Depuydt P, Libbrecht L, Vandekerckhove L, Nollet J, Benoit D et al. Severe drug-induced liver injury associated with prolonged use of linezolid. J Med Toxicol. 2010;6:322–6 (https://doi.org/10.1007/s13181-010-0047-0).
Cariello PF, Kwak EJ, Abdel-Massih RC, Silveira FP. Safety and tolerability of clofazimine as salvage therapy for atypical mycobacterial infection in solid organ transplant recipients. Transpl Infect Dis. 2015;17:111–8 (https://doi.org/10.1111/tid.12340).
Lakshmanan M, Xavier AS. Bedaquiline – The first ATP synthase inhibitor against multi drug resistant tuberculosis. J Young Pharm. 2013;5:112–5 (https://doi.org/10.1016/j.jyp.2013.12.002).
Sasahara K, Shimokawa Y, Hirao Y, Koyama N, Kitano K, Shibata M et al. Pharmacokinetics and metabolism of delamanid, a novel anti-tuberculosis drug, in animals and humans: importance of albumin metabolism in vivo. Drug Metab Dispos. 2015;43:1267–76 (https://doi.org/10.1124/dmd.115.064527).
Gler MT, Skripconoka V, Sanchez-Garavito E, Xiao H, Cabrera-Rivero JL, Vargas-Vasquez DE et al. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med. 2012;366:2151–60 (https://doi.org/10.1056/NEJMoa1112433).
World Health Organization, Management Sciences for Health, KNCV Tuberculosis Foundation. Electronic recording and reporting for tuberculosis care and control (WHO/HTM/TB/2011.22). Geneva: World Health Organization; 2012 (https://apps.who.int/iris/handle/10665/44840).
Koh WJ, Kwon OJ, Suh GY, Chung MP, Kim H, Lee NY. Six-month therapy with aerosolized interferon-γ for refractory multidrug-resistant pulmonary tuberculosis. J Korean Med Sci. 2004;19:167–71 (https://doi.org/10.3346/jkms.2004.19.2.167).
Meeting report of the WHO expert consultation on drug-resistant tuberculosis treatment outcome definitions, 17–19 November 2020. Geneva: World Health Organization; 2021 (https://www.who.int/publications/i/item/9789240022195).