2.5. References

  1. Global tuberculosis report 2024. Geneva: World Health Organization; 2024 (https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2024).
  2. Resolution 78/L.4. Political declaration of the high-level meeting of the General Assembly on the fight against tuberculosis. New York: United Nations; 2023 (https://digitallibrary.un.org/record/4022582).
  3. Implementing the End TB Strategy: the essentials. Geneva: World Health Organization; 2015 (https://apps.who.int/iris/handle/10665/206499).
  4. Boyer S, March L, Kouanfack C, Laborde-Balen G, Marino P, Aghokeng AF, Mpoudi-Ngole E, Koulla-Shiro S, Delaporte E, Carrieri MP, Spire B, Laurent C, Moatti JP; Stratall ANRS 12110/ESTHER Study Group. Monitoring of HIV viral load, CD4 cell count, and clinical assessment versus clinical monitoring alone for antiretroviral therapy in low-resource settings (Stratall ANRS 12110/ESTHER): a cost-effectiveness analysis. Lancet Infect Dis. 2013 Jul;13(7):577–86. doi: 10.1016/S1473– 3099(13)70073–2. Epub 2013 Apr 18. PMID: 23602084.
  5. Eckman MH, Ward JW, Sherman KE. Cost effectiveness of universal screening for hepatitis C virus infection in the era of direct-acting, pangenotypic treatment regimens. Clin Gastroenterol Hepatol. 2019;17:930–9. e9. doi: https://doi.org/10.1016/j.cgh.2018.08.080.
  6. Wang J-H, Chen C-H, Chang C-M, Feng W-C, Lee C-Y, Lu S-N. Hepatitis C virus core antigen is costeffective in community-based screening of active hepatitis C infection in Taiwan. J Formos Med Assoc. 2020;119:504–8. doi: https://doi.org/10.1016/j.jfma.2019.07.011.
  7. Report for WHO: non-inferiority evaluation of Nipro NTM+MDRTB and Hain GenoType MTBDRplus V2 line probe assays. Geneva: Foundation for Innovative New Diagnostics; 2015.
  8. Nathavitharana RR, Cudahy PG, Schumacher SG, Steingart KR, Pai M, Denkinger CM. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J. 2017;49:1601075. doi: https://doi.org/10.1183/13993003.01075-2016.
  9. Rapid diagnosis of tuberculosis brochure. Nehren, Germany: Hain Lifescience; 2015 (http://www.hain-lifescience.de/uploadfiles/file/produkte/mikrobiologie/mykobakterien/tb_eng.pdf).
  10. Bossuyt P, Reitsma J, Bruns D, Gatsonis C, Glasziou P, Irwig L et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015;351:h5527. doi: https://doi.org/10.1136/bmj.h5527.
  11. Sekiguchi J, Nakamura T, Miyoshi-Akiyama T, Kirikae F, Kobayashi I, Augustynowicz-Kopec E et al. Development and evaluation of a line probe assay for rapid identification of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis strains. J Clin Microbiol. 2007;45:2802–7. doi: https://doi.org/10.1128/jcm.00352-07.
  12. Köser CU, Cirillo DM, Miotto P. How to optimally combine genotypic and phenotypic drug susceptibility testing methods for pyrazinamide. Antimicrob Agents Chemother. 2020;64:e01003– 20. doi: https://doi.org/10.1128/AAC.01003-20.
  13. Groessl EJ, Ganiats TG, Hillery N, Trollip A, Jackson RL, Catanzaro DG et al. Cost analysis of rapid diagnostics for drug-resistant tuberculosis. BMC Infect Dis. 2018;18:102. doi: https://doi.org/10.1186/s12879-018-3013-0.
  14. Li X, Deng Y, Wang J, Jing H, Shu W, Qin J et al. Rapid diagnosis of multidrug-resistant tuberculosis impacts expenditures prior to appropriate treatment: a performance and diagnostic cost analysis. Infect Drug Resist. 2019;12:3549–55. doi: https://doi.org/10.2147/idr.S224518.
  15. GRADEpro GDT [website]. Hamilton, Ontario: McMaster University; 2020 (https://gradepro.org/).

Book navigation